1
|
Fadeev E, Hennenfeind JH, Amano C, Zhao Z, Klun K, Herndl GJ, Tinta T. Bacterial degradation of ctenophore Mnemiopsis leidyi organic matter. mSystems 2024; 9:e0126423. [PMID: 38259104 PMCID: PMC10878102 DOI: 10.1128/msystems.01264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Blooms of gelatinous zooplankton, an important source of protein-rich biomass in coastal waters, often collapse rapidly, releasing large amounts of labile detrital organic matter (OM) into the surrounding water. Although these blooms have the potential to cause major perturbations in the marine ecosystem, their effects on the microbial community and hence on the biogeochemical cycles have yet to be elucidated. We conducted microcosm experiments simulating the scenario experienced by coastal bacterial communities after the decay of a ctenophore (Mnemiopsis leidyi) bloom in the northern Adriatic Sea. Within 24 h, a rapid response of bacterial communities to the M. leidyi OM was observed, characterized by elevated bacterial biomass production and respiration rates. However, compared to our previous microcosm study of jellyfish (Aurelia aurita s.l.), M. leidyi OM degradation was characterized by significantly lower bacterial growth efficiency, meaning that the carbon stored in the OM was mostly respired. Combined metagenomic and metaproteomic analysis indicated that the degradation activity was mainly performed by Pseudoalteromonas, producing a large amount of proteolytic extracellular enzymes and exhibiting high metabolic activity. Interestingly, the reconstructed metagenome-assembled genome (MAG) of Pseudoalteromonas phenolica was almost identical (average nucleotide identity >99%) to the MAG previously reconstructed in our A. aurita microcosm study, despite the fundamental genetic and biochemical differences of the two gelatinous zooplankton species. Taken together, our data suggest that blooms of different gelatinous zooplankton are likely triggering a consistent response from natural bacterial communities, with specific bacterial lineages driving the remineralization of the gelatinous OM.IMPORTANCEJellyfish blooms are increasingly becoming a recurring seasonal event in marine ecosystems, characterized by a rapid build-up of gelatinous biomass that collapses rapidly. Although these blooms have the potential to cause major perturbations, their impact on marine microbial communities is largely unknown. We conducted an incubation experiment simulating a bloom of the ctenophore Mnemiopsis leidyi in the Northern Adriatic, where we investigated the bacterial response to the gelatinous biomass. We found that the bacterial communities actively degraded the gelatinous organic matter, and overall showed a striking similarity to the dynamics previously observed after a simulated bloom of the jellyfish Aurelia aurita s.l. In both cases, we found that a single bacterial species, Pseudoalteromonas phenolica, was responsible for most of the degradation activity. This suggests that blooms of different jellyfish are likely to trigger a consistent response from natural bacterial communities, with specific bacterial species driving the remineralization of gelatinous biomass.
Collapse
Affiliation(s)
- Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Jennifer H. Hennenfeind
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| | - Tinkara Tinta
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
2
|
Ma CY, Zhang W, Luo DL, Jiang HJ, Wu XH, Sun K, Dai CC. Fungal endophyte promotes plant growth and disease resistance of Arachis hypogaea L. by reshaping the core root microbiome under monocropping conditions. Microbiol Res 2023; 277:127491. [PMID: 37769598 DOI: 10.1016/j.micres.2023.127491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Fungal endophytes play critical roles in helping plants adapt to adverse environmental conditions. The root endophyte Phomopsis liquidambaris can promote the growth and disease control of peanut plants grown under monocropping systems; however, how such beneficial traits are produced is largely unknown. Since the plant endophytic microbiome is directly linked to plant growth and health, and the composition of which has been found to be potentially influenced by microbial inoculants, this study aims to clarify the roles of root endophytic bacterial communities in P. liquidambaris-mediated plant fitness enhancement under monocropping conditions. Here, we found that P. liquidambaris inoculation induced significant changes in the root bacterial community: enriching some beneficial bacteria such as Bradyrhizobium sp. and Streptomyces sp. in the roots, and improving the core microbial-based interaction network. Next, we assembled and simplified a synthetic community (SynII) based on P. liquidambaris-derived key taxa, including Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces sp. MB6, and Bradyrhizobium sp. MB15. Furthermore, the application of the simplified synthetic community suppressed root rot caused by Fusarium oxysporum, promoted plant growth, and increased peanut yields under continuous monocropping conditions. The resistance of synII to F. oxysporum is related to the increased activity of defense enzymes. In addition, synII application significantly increased shoot and root biomass, and yield by 35.56%, 81.19%, and 34.31%, respectively. Collectively, our results suggest that the reshaping of root core microbiota plays an important role in the probiotic-mediated adaptability of plants under adverse environments.
Collapse
Affiliation(s)
- Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Chathalingath N, Kingsly JS, Gunasekar A. Biosynthesis and biodegradation of poly(3-hydroxybutyrate) from Priestia flexa; A promising mangrove halophyte towards the development of sustainable eco-friendly bioplastics. Microbiol Res 2022; 267:127270. [PMID: 36502639 DOI: 10.1016/j.micres.2022.127270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The protracted persistence of petrochemical plastics in the environment and their non-biodegradability impede the survival of living creatures. Recently, biopolymers are being thoroughly researched as a potential replacement for conventional plastics. This present study sought to locate Poly(3-hydroxybutyrate) synthesizing bacterial species prevalent in the mangrove ecosystem. Six halophilic bacterial isolates were obtained from the mangrove habitat, four isolates displayed superior cell dry weight as well as PHB accumulation. Isolate PMPHB5 showed the highest cell dry weight (4.92 ± 0.02 g/L), while the maximum PHA yield (80%) was found with PMPHB7. Hence, PMPHB7 was chosen for further optimization of carbon source wherein glucose demonstrated improved cell growth as well as PHB production. The characterization of the PHB granules was performed by FT-IR spectroscopy and FE-SEM EDX. The presence of characteristic elements in the sample was confirmed using EDX. Isolate PMPHB7 was further identified as Priestia flexa through 16S rRNA gene sequencing (GenBank accession number: ON362236) and a phylogenetic tree was constructed to reveal the molecular relationships of this organism with others. The solvent-cast biopolymer film was made to check the biodegradability of the extracted PHB. When buried in soil, it was found that the biopolymer film exhibited approximately 73% biodegradation after 21 days. Thus, the present study sheds light on the potential of mangrove-associated halophytes to efficiently produce PHB that is readily biodegradable in soil.
Collapse
Affiliation(s)
- Nayana Chathalingath
- PG and Research Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Joshua Stephen Kingsly
- PG and Research Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Anbarasi Gunasekar
- PSGR Krishnammal College for Women, Department of Biotechnology, Coimbatore 641004, Tamil Nadu, India.
| |
Collapse
|
5
|
Acıkgoz-Erkaya I, Bayramoglu G, Akbulut A, Arica MY. Immobilization of Candida rugosa Lipase on Magnetic Biosilica Particles: Hydrolysis and Transesterification Studies. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0387-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential. World J Microbiol Biotechnol 2021; 37:147. [PMID: 34363544 DOI: 10.1007/s11274-021-03116-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023]
Abstract
Thalassobacillus is a moderately halophilic genus that has been isolated from several sites worldwide, such as hypersaline lakes, saline soils, salt flats, and volcanic mud. Halophilic bacteria have provided functional stable biomolecules in harsh conditions for industrial purposes. Despite its potential biotechnological applications, Thalassobacillus has not been fully characterized yet. This review describes the Thalassobacillus genus, with the few species reported, pointing out its possible applications in enzymes (amylases, cellulases, xylanases, and others), biosurfactants, bioactive compounds, biofuels production, bioremediation, and plant growth promotion. The Thalassobacillus genus represents a little-explored biological resource but with a high potential.
Collapse
|
7
|
Lu Q, Ge G, Sa D, Wang Z, Hou M, Jia YS. Effects of salt stress levels on nutritional quality and microorganisms of alfalfa-influenced soil. PeerJ 2021; 9:e11729. [PMID: 34316396 PMCID: PMC8286062 DOI: 10.7717/peerj.11729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Background Globally, there is a large amount of salinized land. These soils have varying degrees of salt stress, causing ionic toxicity and osmotic stress on plants. However, it is not clear how different degrees of salt stress affect plant nutrients and microbial communities. Thus, a comprehensive understanding of plant major nutrients and microbial communities response to salt stress is desirable. Results We analyzed the main nutrients of the salt-tolerant ZhongMu No. 3 alfalfa variety planted in a salt stress environment. In mild and moderate group, the protein content and fatty acid content of alfalfa were the highest, indicating the best nutritional value. The severe group of salt stress affected the growth and development of alfalfa, as manifested by a decrease in the nutritional quality of alfalfa. Pseudomonas and Sphingobacterium that from alfalfa stem and leaf endophytes also increased with an increase in salt stress. In contrast, Sphingomonas, Methylobacterium, and Rhizobium decrease with increasing salt stress. Methylobacterium and Rhizobium have extremely significant differences in response to salt stress, and Exiquobacterium also shows significant differences. Conclusions Soil salinity would be an important factor beyond which alfalfa nutrient quality and microbial community structure change. This study identified key levels of salt stress that may affect the nutrient quality and microbial community structure. These findings enhance our understanding of the effects of salt stress on the nutritional quality of alfalfa and provide a reference for the sustainable use of salinized soil in the future.
Collapse
Affiliation(s)
- Qiang Lu
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, China
| | - GenTu Ge
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, China
| | - DuoWen Sa
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, China
| | - ZhiJun Wang
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, China
| | - MeiLing Hou
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, China
| | - Yu Shan Jia
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
8
|
Johnson J, Choi KY. Enzymatic utilization of oil and lignocellulosic biomass using halophilic marine bacteria Micrococcus luteus and Pseudoalteromonas peptidolytica. 3 Biotech 2021; 11:360. [PMID: 34295605 DOI: 10.1007/s13205-021-02902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, hydrolytic and oxidative activities of enzymes isolated from halophilic microbes were characterized and applied for biomass utilization. First, lipase from Micrococcus luteus, and peroxidase and laccase from Pseudoalteromonas phenolica and Pseudoalteromonas peptidolytica were selected and their catalytic activities were determined, respectively. The M. luteus lipase encoding gene was synthesized after codon-optimization and could be successfully expressed in Escherichia coli with the assist of the Tif chaperone protein. The purified enzyme showed 119.13 ± 7.18 and 34.42 ± 5.91 U/mL of lipase and esterase activities, respectively. Moreover, the M. luteus lipase was applied for hydrolysis of the triglycerides mixture, which resulted in 182.9 ± 11.1 mg/L/h of glycerol productivity. Next, peroxidase and laccase activities of P. phenolica and P. peptidolytica were determined, and extracellular enzymes of P. peptidolytica was applied for lignocellulosic biomass degradation, which resulted in 91.9 μg glucose/mg lignocellulose of production yields. Finally, the hydrolytic and oxidative activities of the enzymes from halophilic microbes could be further utilized for biomass treatment and biochemical production.
Collapse
Affiliation(s)
- Jervian Johnson
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do South Korea
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do South Korea
| |
Collapse
|
9
|
Mishra M, Chauhan S, Velramar B, Soni RK, Pamidimarri SDVN. Facile bioconversion of vegetable food waste into valuable organic acids and green fuels using synthetic microbial consortium. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0735-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Park YL, Choi TR, Kim HJ, Song HS, Lee HS, Park SL, Lee SM, Kim SH, Park S, Bhatia SK, Gurav R, Sung C, Seo SO, Yang YH. NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes. J Microbiol Biotechnol 2021; 31:250-258. [PMID: 33148940 PMCID: PMC9705875 DOI: 10.4014/jmb.2009.09017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Serom Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 1662, Republic of Korea,S.O. Seo Fax: +82-2-2164-4316 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea,Corresponding authors Y.H. Yang Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
11
|
Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly(3-hydroxybutyrate) production with low-cost medium and easy recovery. Int J Biol Macromol 2020; 167:151-159. [PMID: 33249160 DOI: 10.1016/j.ijbiomac.2020.11.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a common polyhydroxyalkanoate (PHA) with potential as an alternative for petroleum-based plastics. Previously, we reported a new strain, Halomonas sp. YLGW01, which hyperproduces PHB with 94% yield using fructose. In this study, we examined the PHB production machinery of Halomonas sp. YLGW01 in more detail by deep-genome sequencing, which revealed a 3,453,067-bp genome with 65.1% guanine-cytosine content and 3054 genes. We found two acetyl-CoA acetyltransferases (Acetoacetyl-CoA thiolase, PhaA), one acetoacetyl-CoA reductase (PhaB), two PHB synthases (PhaC1, PhaC2), PHB depolymerase (PhaZ), and Enoyl-CoA hydratase (PhaJ) in the genome, along with two fructose kinases and fructose transporter systems, including the phosphotransferase system (PTS) and ATP-binding transport genes. We then examined the PHB production by Halomonas sp. YLGW01 using high-fructose corn syrup (HFCS) containing fructose, glucose, and sucrose in sea water medium, resulting in 7.95 ± 0.11 g/L PHB (content, 67.39 ± 0.34%). PHB was recovered from Halomonas sp. YLGW01 using different detergents; the use of Tween 20 and SDS yielded micro-sized granules with high purity. Overall, these results reveal the distribution of PHB synthetic genes and the sugar utilization system in Halomonas sp. YLGW01 and suggest a possible method for PHB recovery.
Collapse
|
12
|
Lam MQ, Chen SJ, Goh KM, Abd Manan F, Yahya A, Shamsir MS, Chong CS. Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability. Braz J Microbiol 2020; 52:251-256. [PMID: 33141351 DOI: 10.1007/s42770-020-00401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.
Collapse
Affiliation(s)
- Ming Quan Lam
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sye Jinn Chen
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Adibah Yahya
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600, Muar, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
13
|
Park YL, Choi TR, Han YH, Song HS, Park JY, Bhatia SK, Gurav R, Choi KY, Kim YG, Yang YH. Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing. J Biotechnol 2020; 322:21-28. [DOI: 10.1016/j.jbiotec.2020.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
14
|
Quantification of Extracellular Proteases and Chitinases from Marine Bacteria. Curr Microbiol 2020; 77:3927-3936. [PMID: 32986181 DOI: 10.1007/s00284-020-02216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Abstract
A total of 92 marine bacteria belonging to Pseudomonas, Pseudoalteromonas, Psychrobacter, and Shewanella were first screened for their proteolytic activity. In total, four Pseudomonas strains belonging to Ps. fluorescens, Ps. fragi, Ps. gessardii, and Ps. marginalis; 14 Pseudoalteromonas strains belonging to Psa. arctica, Psa. carrageenovora, Psa. elyakovii, Psa. issachenkonii, Psa. rubra, Psa. translucida, and Psa. tunicata; and two Shewanella strains belonging to S. baltica and S. putrefaciens were identified to have a weak to high proteolytic activity (from 478 to 4445 mU/mg trypsin equivalent) against skim milk casein as protein source. Further chitinolytic activity screening based on these 20 proteolytic strains using colloidal chitin yielded five positive strains which were tested against three different chitin substrates in order to determine the various types of chitinases. Among the strains that can produce both proteases and chitinases, Psa. rubra DSM 6842T expressed not only the highest proteolytic activity (2558 mU/mg trypsin equivalent) but also the highest activity of exochitinases, specifically, β-N-acetylglucosaminidase (6.33 mU/107 cfu) as well. We anticipate that this strain can be innovatively applied to the valorization of marine crustaceans side streams.
Collapse
|
15
|
Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int J Biol Macromol 2020; 154:929-936. [DOI: 10.1016/j.ijbiomac.2020.03.129] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/23/2022]
|
16
|
Choi TR, Song HS, Han YH, Park YL, Park JY, Yang SY, Bhatia SK, Gurav R, Kim HJ, Lee YK, Choi KY, Yang YH. Enhanced tolerance to inhibitors of Escherichia coli by heterologous expression of cyclopropane-fatty acid-acyl-phospholipid synthase (cfa) from Halomonas socia. Bioprocess Biosyst Eng 2020; 43:909-918. [PMID: 31989256 DOI: 10.1007/s00449-020-02287-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/11/2020] [Indexed: 02/05/2023]
Abstract
Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.
Collapse
Affiliation(s)
- Tae-Rim Choi
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong-Hoon Han
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Jun Young Park
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Su-Yeon Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Shashi Kant Bhatia
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea.,Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, South Korea
| | - Ranjit Gurav
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hyun Joong Kim
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yoo Kyung Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Kwon Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea. .,Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
17
|
Song WS, Kim SM, Jo SH, Lee JS, Jeon HJ, Ko BJ, Choi KY, Yang YH, Kim YG. Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium Pseudoalteromonas phenolica in response to salt stress. RSC Adv 2020; 10:23792-23800. [PMID: 35517354 PMCID: PMC9054934 DOI: 10.1039/d0ra04034g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023] Open
Abstract
The halophilic bacterium Pseudoalteromonas phenolica is well known as a promising candidate that enables the recycling of organic wastes at high salinity. However, for industrial applications of P. phenolica further research is required to explore the biological mechanism for maximizing the activities and productivities of this bacterium. In this study, we investigated the osmotic stress resistance and specific protease activities of P. phenolica in a normal-salt medium (0.3 M NaCl) and high-salt medium (1 M NaCl) based on intra- and extracellular multi-omics approaches. Proteins related to betaine and proline biosynthesis were increased under high salt stress. The targeted metabolite analysis found that proline was overproduced and accumulated outside the cell at high salinity, and betaine was accumulated in the cell by activation of biosynthesis as well as uptake. In addition, extracellular serine proteases were shown to be upregulated in response to salt stress by the extracellular proteomic analysis. The specific proteolytic activity assay indicated that the activities of serine proteases, useful enzymes for the recycling of organic wastes, were increased remarkably under high salt stress. Our results suggest that betaine and proline are key osmoprotectant metabolites of P. phenolica, and they can be used for the improvement of protease production and P. phenolica activities for the recycling of high-salt organic wastes in the future. Multi-omics study showed the osmoprotective mechanism and changes of proteolytic activities of Pseudoalteromonas phenolica in response to salt stress.![]()
Collapse
Affiliation(s)
- Won-Suk Song
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Seong-Min Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| | - Byoung Joon Ko
- New Drug Development Center
- Osong Medical Innovation Foundation
- Cheongju 28160
- Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering
- College of Engineering
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering
- Soongsil University
- Seoul 06978
- Republic of Korea
| |
Collapse
|
18
|
Rahman MS, Choi YS, Kim YK, Park C, Yoo JC. Production of Novel Polygalacturonase from Bacillus paralicheniformis CBS32 and Application to Depolymerization of Ramie Fiber. Polymers (Basel) 2019; 11:polym11091525. [PMID: 31546870 PMCID: PMC6780255 DOI: 10.3390/polym11091525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Polygalacturonase (EC. 3.2.1.15) is an enzyme that hydrolyzes the alpha-1,4 glycosidic bonds between galacturonic acid. In this study, an alkaline polygalacturonase producer Bacillus paralicheniformis CBS32 was isolated from kimchi (conventional Korean fermented food). The 16S rRNA sequence analysis of the isolated strain revealed that it was 99.92% identical to B. paralicheniformis KJ 16LBMN01000156. The polygalacturonase from B. paralicheniformis CBS32 was named PN32, and the purified PN32 showed a 16.8% yield and a 33-fold purity compared to the crude broth. The molecular mass, 110 kDa, was determined by SDS-PAGE, and the active band was confirmed by zymography analysis. The N-terminal amino acid sequence residues of PN32 were determined to be Gly–Val–Lys–Glu–Val–X–Gln–Thr–Phe. In the sequence comparison, PN32 was suggested as a novel polygalacturonase, since the sequence was not matched with the previous reports. In an application study, enzymatic depolymerization of ramie was performed for fiber degumming, and the result showed that the PN32 had a 28% higher depolymerization compared to the commercial pectinase. Overall, based on the results, PN32 has high potential for industrial applications.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Yoon Seok Choi
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Young Kyun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea.
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
19
|
Hong JW, Song HS, Moon YM, Hong YG, Bhatia SK, Jung HR, Choi TR, Yang SY, Park HY, Choi YK, Yang YH. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess Biosyst Eng 2019; 42:603-610. [DOI: 10.1007/s00449-018-02066-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
20
|
Johnson J, Yang YH, Lee DG, Yoon JJ, Choi KY. Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expr Purif 2018; 152:46-55. [PMID: 30055246 DOI: 10.1016/j.pep.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 01/29/2023]
Abstract
In this study, protease Pph_Pro1 from Pseudoalteromonas phenolica, possessing extracellular proteolytic activity and salt tolerance, was investigated for cloning, expression, and purification purposes. Through optimization, it was determined that optimum soluble recombinant expression was achieved when Pph_Pro1 was co-expressed with the pTf16 vector chaperone in LB medium supplemented with CaCl2. Pph_Pro1 was purified using osmotic shock and immobilized metal-affinity chromatography (IMAC). Isolated Pph_Pro1 activity was measured as 0.44 U/mg using casein as a substrate. Interestingly, Pph_Pro1 displayed halophilic, alkaliphilic, and unexpected thermostable properties. Furthermore, it was resistant to several hydrophilic and hydrophobic organic solvents. Substrate specificity and kinetic values such as Km and Vmax were determined with casein, bovine serum albumin (BSA), and algal waste protein as substrates, indicating that the Pph_Pro1 protease enzyme had a greater affinity for casein. Based on the remarkable characteristics of this Pph_Pro1 protease enzyme, it can potentially be utilized in many biotechnological industries.
Collapse
Affiliation(s)
- Jervian Johnson
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Doo-Geun Lee
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan-si, Chungcheongnam-do, 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan-si, Chungcheongnam-do, 31056, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea.
| |
Collapse
|