1
|
Miwa T, Yumoto A, Tada S, Kim SW, Minagawa N, Matsuda T, Ohtake K, Shimizu Y, Sakamoto K, Aigaki T, Ito Y, Uzawa T. In Vitro Selection of Collagen-Binding Vascular Endothelial Growth Factor Containing Genetically Encoded Mussel-Inspired Adhesive Amino Acids. Chemistry 2025; 31:e202404178. [PMID: 39789869 DOI: 10.1002/chem.202404178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids. Herein, we incorporated an adhesive non-natural amino acid found in marine mussels, L-3,4-dihydroxyphenylalanine (DOPA), into the library for all-in-one in vitro selection. After selection, we identified DOPA-containing CB-VEGF. CB-VEGF binds to collagen with an apparent dissociation constant of 2 nM; naïve VEGF does not bind to collagen. The collagen-binding peptide domain of CB-VEGF (CB-peptide) exhibited stronger binding to collagen than a mutant peptide (substitution from DOPA to tyrosine), indicating the importance of DOPA to collagen binding. The collagen-binding affinity of CB-VEGF is 10-fold higher than that of CB-peptide, suggesting that the collagen-binding ability of CB-VEGF is not due to the additive function of CB-peptide to VEGF, but is synergistic. Furthermore, increased cell growth was observed on CB-VEGF-treated collagen surfaces, not VEGF-treated collagen surfaces. Thus, integrating all-in-one in vitro selection and DOPA incorporation shows promise in generating adhesive proteins on solid supports.
Collapse
Affiliation(s)
- Takuya Miwa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Present address: Department of Clinical Pharmacology, Graduate School of Medicine, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Chuo, Tokyo, 103-8324, Japan
| | - Akiko Yumoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Woong Kim
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Noriko Minagawa
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takayoshi Matsuda
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | - Kazumasa Ohtake
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Present address: Department of Electrical Engineering and Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, 565-0874, Japan
| | - Kensaku Sakamoto
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Aigaki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Lee D, Kim MK, Choi JI. Development of Orthogonal Aminoacyl tRNA Synthetase Mutant with Enhanced Incorporation Ability with Para-azido-L-phenylalanine. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
5
|
Aarthy M, George A, Ayyadurai N. Beyond protein tagging: Rewiring the genetic code of fluorescent proteins - A review. Int J Biol Macromol 2021; 191:840-851. [PMID: 34560154 DOI: 10.1016/j.ijbiomac.2021.09.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022]
Abstract
Fluorescent proteins (FP) are an integral part of modern biology due to its diverse biochemical and photophysical properties. The boundaries of FP have been extended through conventional mutagenesis and directed evolution approaches. Engineering of FP based on the standard genetic code consisting of 20 amino acids with limited functional groups restrict its diversification. Degeneracy of genetic code has helped in covering this substantial gap through genetic code engineering, wherein introduction of unnatural amino acid (UAA) analogues resulted in a collection of FP with varying properties. This review features the work carried till date in the area of FP incorporated with UAAs and explores strategies employed for incorporation, impact of UAAs in chromophore and surrounding residues and changes in inherent properties of FP. The long-standing association of FP as a tool for high throughput screening of orthogonal aaRS/tRNA pairs used in site specific incorporation of UAAs is expounded. Insertion of UAAs in FP has enabled their use in contemporary fields such as biophotovoltaics, bioremediation, biosensors, biomaterials and imaging of acidic vesicles. Thus, expansion of genetic code of FP is envisaged to rejig the existing spectra of colors and future research initiative in this direction is expected to glow brighter and brighter.
Collapse
Affiliation(s)
- Mayilvahanan Aarthy
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Augustine George
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Niraikulam Ayyadurai
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.
| |
Collapse
|
6
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
7
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Boros K, Moisă ME, Nagy CL, Paizs C, Toşa MI, Bencze LC. Robust, site-specifically immobilized phenylalanine ammonia-lyases for the enantioselective ammonia addition of cinnamic acids. Catal Sci Technol 2021; 11:5553-5563. [PMID: 34745555 PMCID: PMC8504149 DOI: 10.1039/d1cy00195g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023]
Abstract
Phenylalanine ammonia-lyases (PALs) catalyse the non-oxidative deamination of l-phenylalanine to trans-cinnamic acid, while in the presence of high ammonia concentration, the synthetically attractive reverse reaction occurs. Although they have been intensively studied, the wider application of PALs for the large scale synthesis of non-natural amino acids is still rather limited, mainly due to the decreased operational stability of PALs under the high ammonia concentration conditions of ammonia addition. Herein, we describe the development of a highly stable and active immobilized PAL-biocatalyst obtained through site-specific covalent immobilization onto single-walled carbon nanotubes (SWCNTs), employing maleimide/thiol coupling of engineered enzymes containing surficial Cys residues. The immobilization method afforded robust biocatalysts (by strong covalent attachment to the support) and allowed modulation of enzymatic activity (by proper selection of binding site, controlling the orientation of the enzyme attached to the support). The novel biocatalysts were investigated in PAL-catalyzed reactions, focusing on the synthetically challenging ammonia addition reaction. The optimization of the immobilization (enzyme load) and reaction conditions (substrate : biocatalyst ratio, ammonia source, reaction temperature) involving the best performing biocatalyst SWCNTNH2 -SS-PcPAL was performed. The biocatalyst, under the optimal reaction conditions, showed high catalytic efficiency, providing excellent conversion (c ∼90% in 10 h) of cinnamic acid into l-Phe, and more importantly, possesses high operational stability, maintaining its high efficiency over >7 reaction cycles. Moreover, the site-specifically immobilized PcPAL L134A/S614C and PcPAL I460V/S614C variants were successfully applied in the synthesis of several l-phenylalanine analogues of high synthetic value, providing perspectives for the efficient replacement of classical synthetic methods for l-phenylalanines with a mild, selective and eco-friendly enzymatic alternative.
Collapse
Affiliation(s)
- Krisztina Boros
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| | - Mădălina Elena Moisă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| | - Csaba Levente Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| | - Csaba Paizs
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| | - Monica Ioana Toşa
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University Arany János Str. 11 RO-400028 Cluj-Napoca Romania
| |
Collapse
|
9
|
Park HJ, Kim S, Jeon EJ, Song IT, Lee H, Son Y, Hong HS, Cho SW. PEGylated substance P augments therapeutic angiogenesis in diabetic critical limb ischemia. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Nadar SS, Rathod VK. Amino acid induced hyper activation of laccase and its application in dye degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Won Y, Jeon H, Pagar AD, Patil MD, Nadarajan SP, Flood DT, Dawson PE, Yun H. In vivo biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chem Commun (Camb) 2019; 55:15133-15136. [DOI: 10.1039/c9cc08503c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cellular system for the in vivo biosynthesis of Tyr-analogs and their concurrent incorporation into target proteins is reported.
Collapse
Affiliation(s)
- Yumi Won
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | | | - Dillon T. Flood
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Philip E. Dawson
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Hyungdon Yun
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| |
Collapse
|
12
|
Ilamaran M, Sriram Raghavan S, Karthik S, Sanjay Nalawade K, Samvedna S, Routray W, Kamini NR, Saravanan P, Ayyadurai N. A facile method for high level dual expression of recombinant and congener protein in a single expression system. Protein Expr Purif 2018; 156:1-7. [PMID: 30562573 DOI: 10.1016/j.pep.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Protein engineering is an emerging field for developing novel therapeutic proteins and commercial enzymes, along with a major impact on the global market. In recent decades, advanced methods employing protein modification through expansion of the genetic code have led to the development of proteins with new biochemical and physical properties. These techniques have produced engineered proteins with improved attribute comprising substrate relaxation, protein drug conjugation and high stability under extreme conditions of high temperatures, pH and organic solvents. Furthermore, residue specific incorporation is the simplest method for the global incorporation of non-canonical amino acid (NCAA) for protein modification; however it has the major drawbacks of high production cost and manpower requirement. In the present study, we developed a method for the incorporation of single NCAA in two different proteins by using Escherichia coli (E. coli) expression system. For that, the dual protein expressing Escherichia coli JW2581 strain was constructed by transforming pQE80L and pD881-PpiBT vectors with different promoters, selectable markers and AnnexinV, GFPHS gene. To modify the protein, the 3,4 dihydroxy phenyl alanine (DOPA) was globally incorporated into the GFPHS and Annexin V protein using dual protein expression system. The incorporation efficiency during the dual protein expression was achieved through optimized concentrations of amino acids, carbohydrate and inducers in minimal medium. This method for the incorporation of single NCAA into two different proteins using a single expression host system saves the production cost, manpower and time substantially.
Collapse
Affiliation(s)
- M Ilamaran
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - S Sriram Raghavan
- Department of Crystallography and Biophysics, Madras University, Chennai, India
| | - S Karthik
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | | | - S Samvedna
- Department of Biotechnology, Rajalakshmi Engineering Collage, Chennai, India
| | - W Routray
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - N R Kamini
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - P Saravanan
- Department of Biotechnology, Rajalakshmi Engineering Collage, Chennai, India
| | - N Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.
| |
Collapse
|
13
|
Characterization of ELP-fused ω-Transaminase and Its Application for the Biosynthesis of β-Amino Acid. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Almaaytah A, Qaoud MT, Khalil Mohammed G, Abualhaijaa A, Knappe D, Hoffmann R, Al-Balas Q. Antimicrobial and Antibiofilm Activity of UP-5, an Ultrashort Antimicrobial Peptide Designed Using Only Arginine and Biphenylalanine. Pharmaceuticals (Basel) 2018; 11:ph11010003. [PMID: 29301331 PMCID: PMC5874699 DOI: 10.3390/ph11010003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022] Open
Abstract
The recent upsurge of multidrug resistant bacteria (MDRB) among global communities has become one of the most serious challenges facing health professionals and the human population worldwide. Cationic ultrashort antimicrobial peptides (USAMPs) are a promising group of molecules that meet the required criteria of novel antimicrobial drug development. UP-5, a novel penta-peptide, displayed significant antimicrobial activities against various standard and clinical isolates of MDRB. UP-5 displayed MICs values within the range of (10–15 μM) and (55–65 μM) against Gram-positive and Gram-negative bacteria, respectively. Furthermore, UP-5 displayed antibiofilm activity with minimum biofilm eradication concentration (MBEC) value as equal to twofold higher than MIC value. At the same inhibitory concentrations, UP-5 exhibited very low or negligible toxicity toward human erythrocytes and mammalian cells. Combining UP-5 with conventional antibiotics led to a synergistic or additive mode of action that resulted in the reduction of the MIC values for some of the antibiotics by 99.7% along a significant drop in MIC values of the peptide. The stability profile of UP-5 was evaluated in full mouse plasma and serum with results indicating a more stable pattern in plasma. The present study indicates that USAMPs are promising antimicrobial agents that can avoid the negative characteristics of conventional antimicrobial peptides. Additionally, USAMPs exhibit good to moderate activity against MDRB, negligible toxicity, and synergistic outcomes in combination with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Mohammed T Qaoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Gubran Khalil Mohammed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110 Jordan.
| | - Daniel Knappe
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|