1
|
Saxena A, Parveen F, Hussain A, Khubaib M, Ashfaque M. Second-generation biorefineries: single platform for the conversion of lignocellulosic wastes to environmentally important biofuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62623-62654. [PMID: 39476154 DOI: 10.1007/s11356-024-35265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024]
Abstract
The continuously increasing demands for various fossil fuels to achieve the day-to-day needs of the human population are growing and causing adverse effects on the environment and leading to the depletion of their natural resources. To overcome such drastic problems and minimize the production of greenhouse gases, lignocellulose biomass, which is an abundant and bio-renewable source present on earth with excellent properties and composition, has been used for decades to develop biofuels that can easily take over the place of conventional fuels. Lignocellulose biomass comprises polymeric sugars, i.e., cellulose and hemicellulose, and aromatic polymer, lignin, which are responsible for producing various bio-based products. However, utilizing lignocellulosic wastes for such purposes is needed but their recalcitrant structure makes it difficult to achieve their full usage. For this, several pretreatment approaches are developed to loosen the complexity between sugars and lignin. In some way, few of the conventional pretreatment methods are expensive, non-eco-friendly, and produce undesired by-products, causing a lower yield and reusability of enzymes used in the reaction. Utilizing novel pretreatment strategies that are cost-effective, help in increasing the yield of products, and are environment-friendly is required. Thus, incorporating nanoparticles and nanomaterials in the development of pretreatment and other strategies for the production of bio-based products is currently thriving. This review is designed in such a way that the readers can easily get brief knowledge about the production of important biofuels developed within second-generation biorefineries using lignocellulosic biomass. It also summarizes the importance of nanotechnology in different steps of biofuel development.
Collapse
Affiliation(s)
- Ayush Saxena
- Lignocellulose & Biofuel Research Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Research Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Akhtar Hussain
- Lignocellulose & Biofuel Research Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohd Khubaib
- Molecular Immunology Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Research Laboratory, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
2
|
Liang J, Zeng H, Zhang Y, Zhou W, Xiao N. Higher efficiency of vanadate iron in heterogeneous Fenton-like systems to pretreat sugarcane bagasse and its enzymatic saccharification. Biotechnol Bioeng 2024; 121:2780-2792. [PMID: 38711263 DOI: 10.1002/bit.28733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Pretreatment is crucial for effective enzymatic saccharification of lignocellulose such as sugarcane bagasse (SCB). In the present study, SCB was pretreated with five kinds of heterogeneous Fenton-like systems (HFSs), respectively, in which α-FeOOH, α-Fe2O3, Fe3O4, and FeS2 worked as four traditional heterogeneous Fenton-like catalysts (HFCs), while FeVO4 worked as a novel HFC. The enzymatic reducing sugar conversion rate was then compared among SCB after different heterogeneous Fenton-like pretreatments (HFPs), and the optimal HFS and pretreatment conditions were determined. The mechanism underlying the difference in saccharification efficiency was elucidated by analyzing the composition and morphology of SCB. Moreover, the ion dissolution characteristics, variation of pH and Eh values, H2O2 and hydroxyl radical (·OH) concentration of FeVO4 and α-Fe2O3 HFSs were compared. The results revealed that the sugar conversion rate of SCB pretreated with FeVO4 HFS reached up to 58.25%, which was obviously higher than that under other HFPs. In addition, the surface morphology and composition of the pretreated SCB with FeVO4 HFS were more conducive to enzymatic saccharification. Compared with α-Fe2O3, FeVO4 could utilize H2O2 more efficiently, since the dissolved Fe3+ and V5+ can both react with H2O2 to produce more ·OH, resulting in a higher hemicellulose and lignin removal rate and a higher enzymatic sugar conversion rate. It can be concluded that FeVO4 HFP is a promising approach for lignocellulose pretreatment.
Collapse
Affiliation(s)
- Ju Liang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Lab of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Huiying Zeng
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Lab of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yuting Zhang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Lab of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenbing Zhou
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Lab of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Naidong Xiao
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Lab of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Maharjan A, Choi W, Kim HT, Park JH. Catalytic hydrolysis of agar using magnetic nanoparticles: optimization and characterization. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:193. [PMID: 38093358 PMCID: PMC10720145 DOI: 10.1186/s13068-023-02441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main objective of this study was to develop a sustainable agar hydrolysis process for bioethanol production using nanotechnology. Peroxidase-mimicking Fe3O4-MNPs were applied for agar degradation to generate agar hydrolysate-soluble fractions amenable to Saccharomyces cerevisiae and Escherichia coli during fermentation. RESULTS Fe3O4-MNP-treated (Fe3O4-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without Fe3O4-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of Fe3O4-MNPs in agar degradation. CONCLUSIONS To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Wonho Choi
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.
| |
Collapse
|
4
|
Sheikh ZUD, Bajar S, Devi A, Rose PK, Suhag M, Yadav A, Yadav DK, Deswal T, Kaur J, Kothari R, Pathania D, Rani N, Singh A. Nanotechnology based technological development in biofuel production: Current status and future prospects. Enzyme Microb Technol 2023; 171:110304. [PMID: 37639935 DOI: 10.1016/j.enzmictec.2023.110304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Depleting fossil fuels and net carbon emissions associated with their burning have driven the need to find alternative energy sources. Biofuels are near-perfect candidates for alternative energy sources as they are renewable and account for no net CO2 emissions. However, biofuel production must overcome various challenges to compete with conventional fuels. Conventional methods for bioconversion of biomass to biofuel include chemical, thermochemical, and biological processes. Substrate selection and processing, low yield, and total cost of production are some of the main issues associated with biofuel generation. Recently, the uses of nanotechnology and nanoparticles have been explored to improve the biofuel production processes because of their high adsorption, high reactivity, and catalytic properties. The role of these nanoscale particles and nanocatalysts in biomass conversion and their effect on biofuel production processes and yield are discussed in the present article. The applicability of nanotechnology in production processes of biobutanol, bioethanol, biodiesel, biohydrogen, and biogas under biorefinery approach are presented. Different types of nanoparticles, and their function in the bioprocess, such as electron transfer, pretreatment, hydrolysis, microalgae cultivation, lipid extraction, dark and photo fermentation, immobilization, and suppression of inhibitory compounds, are also highlighted. Finally, the current and potential applications of nanotechnology in biorefineries are also discussed.
Collapse
Affiliation(s)
- Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Somvir Bajar
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Arti Devi
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, India
| | - Arti Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Deepak Kumar Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Tanuj Deswal
- Department of Nano Science and Materials, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Japleen Kaur
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Neeta Rani
- Department of National Security Studies, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 12331, Haryana, India.
| |
Collapse
|
5
|
Wu D, Ren H, Xie L, Zhang G, Zhao Y, Wei Z. Strengthening Fenton-like reactions to improve lignocellulosic degradation performance by increasing lignocellulolytic enzyme core microbes during rice straw composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:72-83. [PMID: 36870299 DOI: 10.1016/j.wasman.2023.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the effect of Fenton-like reactions on lignocellulosic degradation performance and identify their driving factors during composting. Rice straw was pretreated by inoculating Aspergillus fumigatus Z1 and then adding Fe (II), which resulted in Fenton-like reactions. The treatment groups included CK (control), Fe (addition of Fe (II)), Z1 (inoculation of A. fumigatus Z1), and Fe + Z1 (inoculation of A. fumigatus Z1 and addition of Fe (II)). The results suggested that Fenton-like reactions can produce lignocellulolytic enzymes and degrade lignocellulose, due to the variation in microbial community composition and diversity. In addition, functional modular microbes were identified by network analysis, which can produce endoglucanase and xylanase. Regarding ligninase, bacteria were more favorable for producing manganese peroxidase, and fungi were more favorable for producing laccase. Additionally, reducing sugars, organic matter, total nitrogen and amino acids were key microhabitat factors of functional modular bacteria, while organic matter, reducing sugars, amino acids and C/N were key microhabitat factors of functional modular fungi, thereby promoting the degradation of lignocellulose. This study provides technical support for lignocellulosic degradation based on Fenton-like reactions.
Collapse
Affiliation(s)
- Di Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China; Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Hao Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
7
|
Ranjusha VP, Matsumoto K, Nara S, Inagaki Y, Sakakibara Y. Application of phyto-Fenton process in constructed wetland for the continuous removal of antibiotics. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/427/1/012006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zhang Y, Liang J, Zhou W, Xiao N. Comparison of Fenton and bismuth ferrite Fenton-like pretreatments of sugarcane bagasse to enhance enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 285:121343. [PMID: 31004952 DOI: 10.1016/j.biortech.2019.121343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
This study compared enzymatic saccharification of sugarcane bagasse (SCB) after application of two different pretreatment methods, Fenton pretreatment (FP) and BiFeO3 Fenton-like pretreatment (BFP). The composition, morphology and structural properties of SCB with different pretreatments were analyzed. Results showed that, after BFP, the yield of reducing sugar of SCB under enzymatic saccharification for 72 h was 25.8%, and the sugar conversion rate was 36.6%, which were 2.2 and 2.4-fold those of the FP, respectively. Moreover, the removal of hemicellulose and delignification in the BFP was more severe than that in the FP. The determination of hydroxyl radical (OH) in the two different Fenton processes revealed that the OH generated in the BiFeO3 Fenton-like system was higher in concentration and longer in action time than that in the Fenton system, which was likely key to the stronger effect of BFP than FP on the enzymatic saccharification of SCB.
Collapse
Affiliation(s)
- Yuting Zhang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ju Liang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbing Zhou
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China.
| | - Naidong Xiao
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China
| |
Collapse
|
9
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|