1
|
Montiel-Corona V, Buitrón G. Light/dark cycles and iron supplementation to enhance the simultaneous production of polyhydroxyalkanoates, 5-aminolevulinic acid, coenzyme Q 10, and pigments through photofermentation. BIORESOURCE TECHNOLOGY 2025; 429:132513. [PMID: 40222488 DOI: 10.1016/j.biortech.2025.132513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
This study aimed to obtain 5-aminolevulinic acid (5-ALA), Coenzyme Q10 (CoQ10), polyhydroxyalkanoates (PHA), carotenoids, and bacteriochlorophylls (Bchl) through the photofermentation of residual wine lees. Light/dark cycles and iron supplementation were evaluated. Under 12-hour light/dark cycles, the production of 5-ALA, CoQ10, carotenoids, and Bchl increased by 1.7, 2.8, 1.7, and 2.4 times, respectively, compared to the continuous illumination control, while PHA production decreased from 511 to 445 mg/L. Combining light/dark cycles with iron supplementation enhanced the biomass production rate. The CoQ10 content increased by 4.9 times (reaching 8.8 mg/g-dw), carotenoids by 3.7 times (6.4 mg/g-dw), and Bchl by 6.4 times (17.9 mg/g-dw) compared to the control treatment, while maintaining 5-ALA at 5.3 µmol/L and PHA at 377 mg/L. The combination of light/dark cycles and iron provides a triple benefit: increased production of value-added substances, enhanced biomass production rate, and improved organic matter removal, making it an attractive option for winery effluent treatment and valorization.
Collapse
Affiliation(s)
- Virginia Montiel-Corona
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, México.
| |
Collapse
|
2
|
Li B, Ge Y, Liang J, Zhu Z, Chen B, Li D, Zhuang Y, Wang Z. Precise regulating the specific oxygen consumption rate to strengthen the CoQ 10 biosynthesis by Rhodobater sphaeroides. BIORESOUR BIOPROCESS 2024; 11:106. [PMID: 39496909 PMCID: PMC11534906 DOI: 10.1186/s40643-024-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is the most consumed dietary supplement and mainly biosynthesized by aerobic fermentation of Rhodobacter sphaeroides (R. sphaeroides). Oxygen supply was identified as a bottleneck for improving CoQ10 yield in R. sphaeroides. In this study, a precise regulation strategy based on dielectric spectroscopy (DS) was applied to further improve CoQ10 biosynthesis by R. sphaeroide. First, a quantitative response model among viable cells, cell morphology, and oxygen uptake rate (OUR) was established. DS could be used to detect viable R. sphaeroides cells, and the relationship among cell morphology, CoQ10 biosynthesis, and OUR was found to be significant. Based on this model, the online specific oxygen consumption rate (QO2) control strategy was successfully applied to the CoQ10 fermentation process. QO2 controlled at 0.07 ± 0.01 × 10- 7mmol/cell/h was most favorable for CoQ10 biosynthesis, resulting in a 28.3% increase in CoQ10 production. Based on the multi-parameters analysis and online QO2 control, a precise online nutrient feeding strategy was established using conductivity detected by DS. CoQ10 production was improved by 35%, reaching 3384 mg/L in 50 L bioreactors. This online control strategy would be effectively applied for improving industrial CoQ10 production, and the precise fermentation control strategy could also be applied to other fermentation process.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China
| | - Yan Ge
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Jianguang Liang
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| |
Collapse
|
3
|
Chen H, Wang Y, Wang W, Cao T, Zhang L, Wang Z, Chi X, Shi T, Wang H, He X, Liang M, Yang M, Jiang W, Lv D, Yu J, Zhu G, Xie Y, Gao B, Wang X, Liu X, Li Y, Ouyang L, Zhang J, Liu H, Li Z, Tong Y, Xia X, Tan GY, Zhang L. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat Biotechnol 2024:10.1038/s41587-024-02267-3. [PMID: 38839873 DOI: 10.1038/s41587-024-02267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Porphyrins and their derivatives find extensive applications in medicine, food, energy and materials. In this study, we produced porphyrin compounds by combining Rhodobacter sphaeroides as an efficient cell factory with enzymatic catalysis. Genome-wide CRISPRi-based screening in R. sphaeroides identifies hemN as a target for improved coproporphyrin III (CPIII) production, and exploiting phosphorylation of PrrA further improves the production of bioactive CPIII to 16.5 g L-1 by fed-batch fermentation. Subsequent screening and engineering high-activity metal chelatases and coproheme decarboxylase results in the synthesis of various metalloporphyrins, including heme and the anti-tumor agent zincphyrin. After pilot-scale fermentation (200 L) and setting up the purification process for CPIII (purity >95%), we scaled up the production of heme and zincphyrin through enzymatic catalysis in a 5-L bioreactor, with CPIII achieving respective enzyme conversion rates of 63% and 98% and yielding 10.8 g L-1 and 21.3 g L-1, respectively. Our strategy offers a solution for high-yield bioproduction of heme and other valuable porphyrins with substantial industrial and medical applications.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yaohong Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ting Cao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xuran Chi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huangwei Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mindong Liang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Mengxue Yang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Wenyi Jiang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongyuan Lv
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yongtao Xie
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Youyuan Li
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Huimin Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuekui Xia
- Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Lu H, He S, Zhang G, Gao F, Zhao R. Periodic oxygen supplementation drives efficient metabolism for enhancing valuable bioresource production in photosynthetic bacteria wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 347:126678. [PMID: 34999192 DOI: 10.1016/j.biortech.2022.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Periodic oxygen supplementation (A-O) strategy was proposed to improve pollutant removal and enhance bioresource production of photosynthetic bacteria (PSB). The A-O strategy obtained higher COD (91.4%) and NH4+-N (78.6%) removal compared with the non-oxygen supplementation (N-O) strategy, which was similar to the continuous oxygen supplementation (C-O) strategy. A-O strategy achieved the highest biomass concentration of 1338.5 mg/L. Bacteriochlorophyll and carotenoids concentration in the A-O strategy were 24.9-31.1% and 15.1-23.7% higher than those in the other two strategies; coenzyme Q10 concentration and content were 52.5% and 21.3% higher than that in the N-O strategy. The metabolomic analysis showed that the A-O strategy enhanced the tricarboxylic acid cycle after fumaric acid formation and β-alanine metabolism, then caused higher biomass accumulation. The A-O strategy reduced the inhibition of photophosphorylation by oxidative-phosphorylation and maintained both characteristics. Hence, A-O might be an economic strategy for enhancing pollutant removal and bioresource production in PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Fengzheng Gao
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
6
|
Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth Syst Biotechnol 2021; 6:335-342. [PMID: 34738044 PMCID: PMC8531756 DOI: 10.1016/j.synbio.2021.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The versatile photosynthetic α-proteobacterium Rhodobacter sphaeroides, has recently been extensively engineered as a novel microbial cell factory (MCF) to produce pharmaceuticals, nutraceuticals, commodity chemicals and even hydrogen. However, there are no well-characterized high-activity promoters to modulate gene transcription during the engineering of R. sphaeroides. In this study, several native promoters from R. sphaeroides JDW-710 (JDW-710), an industrial strain producing high levels of co-enzyme Q10 (Q10) were selected on the basis of transcriptomic analysis. These candidate promoters were then characterized by using gusA as a reporter gene. Two native promoters, Prsp_7571 and Prsp_6124, showed 620% and 800% higher activity, respectively, than the tac promoter, which has previously been used for gene overexpression in R. sphaeroides. In addition, a Prsp_7571-derived synthetic promoter library with strengths ranging from 54% to 3200% of that of the tac promoter, was created on the basis of visualization of red fluorescent protein (RFP) expression in R. sphaeroides. Finally, as a demonstration, the synthetic pathway of Q10 was modulated by the selected promoter T334* in JDW-710; the Q10 yield in shake-flasks increased 28% and the production reached 226 mg/L. These well-characterized promoters should be highly useful in current synthetic biology platforms for refactoring the biosynthetic pathway in R. sphaeroides-derived MCFs.
Collapse
|