1
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
2
|
Kim MY, Bang E, Hwangbo H, Ji SY, Kim DH, Lee H, Park C, Hong SH, Kim GY, Choi YH. Diallyl trisulfide inhibits monosodium urate-induced NLRP3 inflammasome activation via NOX3/4-dependent mitochondrial oxidative stress in RAW 264.7 and bone marrow-derived macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154705. [PMID: 36796188 DOI: 10.1016/j.phymed.2023.154705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Monosodium urate (MSU) crystals are associated with gouty inflammatory diseases. MSU-associated inflammation is majorly triggered by NOD-like receptor protein 3 (NLRP3) inflammasome that promotes interleukin (IL)-1β secretion. Although diallyl trisulfide (DATS) is well-known polysulfide garlic compounds with anti-inflammatory effects, its action in MSU-induced inflammasome activation has not been known yet. PURPOSE The objective of the current study was to investigate anti-inflammasome effects and mechanisms of DATS in RAW 264.7 and bone marrow-derived macrophages (BMDM). METHODS The concentrations of IL-1β were analyzed with enzyme-linked immunosorbent assay. The MSU-induced mitochondrial damage and reactive oxygen species (ROS) production were detected by fluorescence microscope and flow cytometry. The protein expressions of NLRP3 signaling molecules, NADPH oxidase (NOX) 3/4 were assessed with Western blotting. RESULTS DATS suppressed MSU-induced IL-1β and caspase-1 accompanied by decreased inflammasome complex formation in RAW 264.7 and BMDM. In addition, DATS restored mitochondrial damage. DATS downregulated NOX 3/4 that were upregulated by MSU as predicted by gene microarray and confirmed by Western blotting. CONCLUSION This study first reports mechanistic finding that DATS alleviates MSU-induced NLRP3 inflammasome by mediating NOX3/4-dependent mitochondrial ROS production in macrophages in vitro and ex vivo, suggesting DATS could be effective therapeutic candidate for gouty inflammatory condition.
Collapse
Affiliation(s)
- Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea; Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea; Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea.
| |
Collapse
|
3
|
Hong SH, Park C, Hwangbo H, Bang E, Kim SO, Shim JH, Park SH, Lee H, Leem SH, Kim GY, Choi YH. Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Wang J, Zhang S, Xing M, Hong S, Liu L, Ding XJ, Sun XY, Luo Y, Wang CX, Zhang M, Li B, Li X. Current evidence on the role of lipid lowering drugs in the treatment of psoriasis. Front Med (Lausanne) 2022; 9:900916. [PMID: 36035406 PMCID: PMC9403729 DOI: 10.3389/fmed.2022.900916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal lipid distribution is observed in patients with psoriasis, which increases their risk for atherosclerosis. Lipid-lowering drugs have a certain curative effect in the treatment of psoriasis, but there is no relevant evidence-based medical evaluation. Objective The purpose of this systematic evaluation was to assess the efficacy, safety, and potential mechanisms of action of lipid-lowering drugs for the treatment of psoriasis. Methods The PubMed, Embase, Cochrane Central Register of Controlled Trials, Clinical Trial, Chinese National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, and Wanfang Database were searched for relevant articles from inception to 31 December 2021. The RevMan 5.3 and Cochrane risk-of-bias tool were used for data analysis and risk assessment, respectively. The psoriasis area and severity index (PASI) score is the primary outcome indicator in clinical studies. Based on preclinical studies, we elucidated and mapped the action mechanisms of lipid-lowering drugs in the treatment of psoriasis. Results The study included eight randomized controlled studies, four single-arm studies, and four in vitro studies. The results showed that lipid-lowering drugs, particularly statins, administered both orally and topically, can significantly improve psoriatic skin lesions and reduce the PASI scores [standardized mean difference, (SMD): −0.94; 95% CI: [−1.58, −0.31]; p = 0.004]. Oral statins performed best at week eight (SMD: −0.92; 95% CI: [−1.39, −0.44]; p = 0.0001). The mechanism of lipid-lowering drugs in the treatment of psoriasis may be related to the inhibition of keratinocyte proliferation, inhibition of CCL20–CCR6 interaction, and reduction in the levels of inflammatory factors. Limitations There are few studies on lipid-lowering drugs and psoriasis, and their small sample sizes may render the evidence unconvincing. Conclusion The present findings suggest that lipid-lowering drugs are relieving symptoms in psoriasis. Lipid-lowering drugs, particularly statins, can be used to treat psoriasis with good efficacy and few side effects.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-xiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Bin Li,
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Xin Li,
| |
Collapse
|
5
|
Park C, Noh JS, Jung Y, Leem SH, Hyun JW, Chang YC, Kwon TK, Kim GY, Lee H, Choi YH. Fisetin Attenuated Oxidative Stress-Induced Cellular Damage in ARPE-19 Human Retinal Pigment Epithelial Cells Through Nrf2-Mediated Activation of Heme Oxygenase-1. Front Pharmacol 2022; 13:927898. [PMID: 35784747 PMCID: PMC9243462 DOI: 10.3389/fphar.2022.927898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan, South Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, South Korea
- Department of Health Sciences, Dong-A University, Busan, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| |
Collapse
|
6
|
Park C, Lee H, Jin S, Park JH, Han MH, Jeong JW, Kwon HJ, Kim BW, Park SH, Hong SH, Kim GY, Choi YH. The preventive effect of loganin on oxidative stress-induced cellular damage in human keratinocyte HaCaT cells. Biosci Trends 2022; 16:291-300. [PMID: 35691912 DOI: 10.5582/bst.2022.01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Loganin is a type of iridoid glycosides isolated from Corni fructus and is known to have various pharmacological properties, but studies on its antioxidant activity are still lacking. Therefore, in this study, the preventive effect of loganin on oxidative stress-mediated cellular damage in human keratinocyte HaCaT cells was investigated. Our results show that loganin pretreatment in a non-toxic concentration range significantly improved cell survival in hydrogen peroxide (H2O2)-treated HaCaT cells, which was associated with inhibition of cell cycle arrest at the G2/M phase and induction of apoptosis. H2O2-induced DNA damage and reactive oxygen species (ROS) generation were also greatly reduced in the presence of loganin. Moreover, H2O2 treatment enhanced the cytoplasmic release of cytochrome c, upregulation of the Bax/Bcl-2 ratio and degradation of cleavage of poly (ADP-ribose) polymerase, whereas loganin remarkably suppressed these changes. In addition, loganin obviously attenuated H2O2-induced autophagy while inhibiting the increased accumulation of autophagosome proteins, including as microtubule-associated protein 1 light chain 3-II and Beclin-1, and p62, an autophagy substrate protein, in H2O2-treated cells. In conclusion, our current results suggests that loganin could protect HaCaT keratinocytes from H2O2-induced cellular injury by inhibiting mitochondrial dysfunction, autophagy and apoptosis. This finding indicates the applicability of loganin in the prevention and treatment of skin diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea
| | - Jung-Ha Park
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju, Korea
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Byung Woo Kim
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Korea
| | - Yung Hyun Choi
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|