2
|
Zhao D, Zhang LJ, Huang TQ, Kim J, Gu MY, Yang HO. Narciclasine inhibits LPS-induced neuroinflammation by modulating the Akt/IKK/NF-κB and JNK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153540. [PMID: 33773188 DOI: 10.1016/j.phymed.2021.153540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuroinflammation is defined as innate immune system activation in the central nervous system, and is a complex response involved in removing pathogens, toxic components, and dead cells by activating microglial cells. However, over-activated microglia have been implicated in the pathogenesis of neurodegenerative diseases, because they release large amounts of neurotoxic factors. Thus, inhibiting microglial activation may represent an attractive approach for preventing neuroinflammatory disorders. The objective of this study was to investigate the effect of narciclasine (NA) on lipopolysaccharide (LPS)-induced neuroinflammation by evaluating related markers and neurotoxic factors. METHODS BV-2 cells were pre-incubated with NA at 0.1, 0.2, and 0.3 µM for 1h, and then co-treated with LPS for 12 h. Cellular medium and lysates were measured using a nitric oxide assay, enzyme-link immunosorbent assay (ELISA), western blotting, kinase activity assay, luciferase assay, and immunofluorescence assay. C57BL/6N mice were orally administered NA and intraperitoneally injected with LPS, and the cerebral cortex was examined using western blotting and immunofluorescence assays. RESULTS NA showed novel pharmacological activity, inhibiting pro-inflammatory factors, including TNF-α, IL-6, IL-18, NO, and PGE2, but increasing the anti-inflammatory cytokines IL-10 and TGF-β1 in LPS-induced microglial cells. Moreover, NA also attenuated the LPS-induced mRNA and proteins of iNOS and COX-2. The mechanistic study indicated that NA attenuates the secretion of pro-inflammatory factor by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways, and directly inhibits the catalytic activity of IKKα/β. Furthermore, we found that NA also reduced the expression of the microglial markers Iba-1, COX-2, and TNF-α in the mouse brain. CONCLUSION NA inhibits the over-expression of pro-inflammatory factors but it promotes anti-inflammatory cytokines by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways in experimental models. Thus, NA may be a potential candidate for relieving neuroinflammation.
Collapse
Affiliation(s)
- Dong Zhao
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Li Jun Zhang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Tian Qi Huang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Ming-Yao Gu
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Hyun Ok Yang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Gangwon-do, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
4
|
Qi Y, Yang C, Jiang Z, Wang Y, Zhu F, Li T, Wan X, Xu Y, Xie Z, Li D, Pierre SV. Epicatechin-3-Gallate Signaling and Protection against Cardiac Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2019; 371:663-674. [PMID: 31582423 DOI: 10.1124/jpet.119.260117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 03/08/2025] Open
Abstract
At concentrations found in humans after ingestion of one to two cups of green tea, epicatechin-3-gallate (ECG) modulates Na/K-ATPase conformation and activity. Akin to ouabain, an archetypal Na/K-ATPase ligand of the cardiotonic steroid (CTS) family, ECG also activates protein kinase C epsilon type (PKCε) translocation and increases the force of contraction of the rat heart. This study evaluated whether, like ouabain, ECG also modulates Na/K-ATPase/Src receptor function and triggers pre- and postconditioning against ischemia/reperfusion (I/R) injury. In vitro, ECG activated the purified Na/K-ATPase/Src complex. In Langendorff-perfused rat hearts, submicromolar concentrations of ECG administered either before or after ischemia reduced infarct size by more than 40%, decreased lactate dehydrogenase release, and improved the recovery of cardiac function. ECG protection was blocked by PKCε inhibition and attenuated by mitochondrial KATP channel inhibition. In a unique mammalian cell system with depleted Na/K-ATPase α1 expression, ECG-induced PKCε activation persisted but protection against I/R was blunted. Taken together, these results reveal a Na/K-ATPase- and PKCε-dependent mechanism of protection by ECG that is also distinct from the mechanism of action of ouabain. These ECG properties likely contribute to the positive impact of green tea consumption on cardiovaascular health and warrant further investigation into the role of cardiac Na/K-ATPase signaling in the cardioprotective effect of green tea consumption. SIGNIFICANCE STATEMENT: Consumption of green tea, the richest dietary source of ECG, is associated with a reduced risk of cardiac mortality. Antioxidant effects of ECG and other tea polyphenols are well known, but reported for concentrations well above dietary levels. Therefore, the mechanism underlying the cardioprotective effect of green tea remains incompletely understood. This study provides experimental evidence that ECG concentrations commonly detected in humans after consumption of a cup of tea trigger the Na/K-ATPase/Src receptor in a cell-free system, activate a CTS-like signaling pathway, and provide PKCε-dependent protection against ischemia/reperfusion injury in rat hearts. Mechanistic studies in mammalian cells with targeted Na/K-ATPase depletion revealed that although Na/K-ATPase does not mediate ECG-induced PKCε activation, it is required for ECG-induced protection against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yiyao Qi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Changjun Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Zhen Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Yin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Feng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Tao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Yunhui Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Zijian Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Sandrine V Pierre
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| |
Collapse
|