1
|
De La Chesnaye E, Manuel-Apolinar L, Damasio L, Castrejón E, López-Ballesteros R, Revilla-Monsalve MC, Méndez JP. The gonadal expression pattern of lipocalin‑2 and 24p3 receptor is modified in the gonads of the offspring of obese rats. Mol Med Rep 2020; 22:1409-1419. [PMID: 32627017 PMCID: PMC7339820 DOI: 10.3892/mmr.2020.11226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 11/05/2022] Open
Abstract
Obesity represents a global health and economic burden, affecting millions of individuals worldwide. This pathology is associated with a chronic low-grade inflammatory state that is partially responsible for the development of other cardiometabolic complications. Clinical studies have reported an association between high circulating levels of lipocalin-2 (Lcn2) and increased body weight. Additionally, there is scientific evidence demonstrating the impact of maternal obesity on fetal programming. The latter and the fact that the authors previously found that Lcn2 and its receptor (24p3R) are expressed in the gonads of wild-type rats, led to the analysis of their mRNA profile and cellular localization in gonads collected from the offspring of obese rats at 21 days postconception (dpc), and 0, 2, 4, 6, 12, 20 and 30 days postnatal (dpn) in the present study. Semi-quantitative PCR revealed a statistically significant downregulation of Lcn2 and 24p3R mRNA at 21 dpc in the ovaries (P<0.01) and testicles (P<0.001) of the offspring of obese mothers. At 30 dpn, the relative expression of Lcn2 mRNA decreased significantly in the ovaries of the experimental group (P<0.05), while Lcn2 mRNA expression was not detectable in testicles. Regarding 24p3R, its mRNA was only significantly decreased at 21 dpc in ovaries of pups of obese mothers. At 30 dpn, the change in females was not significant. Conversely, in testicles, 24p3R mRNA levels increased slightly in the experimental group at 30 dpn. The Lcn2 protein signal was less intense in gonadal tissue sections from 30 dpn offspring of obese rats (P<0.001), whereas the 24p3R signal was downregulated in ovaries (P<0.001) and slightly upregulated in testicles. It was concluded that maternal obesity changes the expression of Lcn2 and 24p3R in the gonads of the offspring of obese rats, possibly through fetal programming. The consequences of this dysregulation for the offspring's gonadal function remains to be determined.
Collapse
Affiliation(s)
- Elsa De La Chesnaye
- Cardiovascular and Metabolic Diseases Research Unit, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Leticia Manuel-Apolinar
- Endocrine Research Unit, National Medical Center, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Leticia Damasio
- Endocrine Research Unit, National Medical Center, Mexican Social Security Institute, Mexico City 06720, Mexico
| | - Edgar Castrejón
- Department of Biochemistry Diagnostics, Faculty of Higher Education, Cuautitlán Izcalli Campus, National Autonomous University of Mexico, State of Mexico 54714, Mexico
| | - Rebeca López-Ballesteros
- Department of Biochemistry Diagnostics, Faculty of Higher Education, Cuautitlán Izcalli Campus, National Autonomous University of Mexico, State of Mexico 54714, Mexico
| | | | - Juan Pablo Méndez
- Peripheral Obesity Research Unit, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 14000, Mexico
| |
Collapse
|
2
|
Li J, Lu YP, Tsuprykov O, Hasan AA, Reichetzeder C, Tian M, Zhang XL, Zhang Q, Sun GY, Guo J, Gaballa MMS, Peng XN, Lin G, Hocher B. Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet. Diabetologia 2018; 61:1862-1876. [PMID: 29777263 DOI: 10.1007/s00125-018-4635-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. METHODS Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy. RESULTS Male, but not female offspring of HFSSD-fed founders were heavier than those of control-diet-fed counterparts (p < 0.05 and p = 0.066 in males and females, respectively). Both male and female offspring of HFSSD-fed founders were longer compared with control (p < 0.01 for both sexes). Folate treatment of the pregnant dams abolished the effect of the paternal diet on the offspring's body length (p ˂ 0.05). Female offspring of HFSSD-fed founders developed impaired glucose tolerance, which was restored by folate treatment of the dams during pregnancy. The beta cell density per pancreatic islet was decreased in offspring of HFSSD-fed rats (-20% in male and -15% in female F1 offspring, p ˂ 0.001 vs controls). Folate treatment significantly increased the beta cell density (4.3% and 3.3% after folate supplementation given to dams and founders, respectively, p ˂ 0.05 vs the offspring of HFSSD-fed male rats). Changes in liver connective tissue of female offspring of HFSSD-fed founders were ameliorated by treatment of dams with folate (p ˂ 0.01). Hepatic Ppara gene expression was upregulated in female offspring only (1.51-fold, p ˂ 0.05) and was restored in the female offspring by folate treatment (p ˂ 0.05). We observed an increase in hepatic Lcn2 and Tmcc2 expression in female offspring born to male rats exposed to an unhealthy diet during spermatogenesis before mating (p ˂ 0.05 vs controls). Folate treatment of the corresponding dams during pregnancy abolished this effect (p ˂ 0.05). Analysis of DNA methylation levels of CpG islands in the Ppara, Lcn2 and Tmcc2 promoter regions revealed that the paternal unhealthy diet induced alterations in the methylation pattern. These patterns were also affected by folate treatment. Total liver DNA methylation was increased by 1.52-fold in female offspring born to male rats on an unhealthy diet prior to mating (p ˂ 0.05). This effect was abolished by folate treatment during pregnancy (p ˂ 0.05 vs the offspring of HFSSD-fed male rats). CONCLUSIONS/INTERPRETATION Folate treatment of pregnant dams restores effects on female offspring's glucose metabolism induced by pre-conception male founder HFSSD.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yong-Ping Lu
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Oleg Tsuprykov
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Institute for Laboratory Medicine, IFLB, Berlin, Germany
| | - Ahmed A Hasan
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Mei Tian
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Xiao Li Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Qin Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Guo-Ying Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Jingli Guo
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Mohamed M S Gaballa
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Xiao-Ning Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|