1
|
Takahashi M, Kinoshita T, Maruyama K, Suzuki T. CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Associated with Coenzyme Q10 Availability Affect the Subjective Quality of Life Score (SF-36) after Long-Term CoQ10 Supplementation in Women. Nutrients 2022; 14:nu14132579. [PMID: 35807759 PMCID: PMC9268390 DOI: 10.3390/nu14132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The single nucleotide polymorphisms (SNPs) rs3808607, rs2072183, rs2032582, and rs1761667 are associated with coenzyme Q10 (CoQ10) bioavailability in women after long-term CoQ10 supplementation. However, the beneficial aspects of the association between these SNPs and CoQ10 supplementation remain unknown. We investigated their relationship using the subjective quality of life score SF-36 by reanalyzing previous data from 92 study participants who were receiving ubiquinol (a reduced form of CoQ10) supplementation for 1 year. Two-way repeated-measures analysis of variance revealed a significant interaction between rs1761667 and the SF-36 scores of role physical (p = 0.016) and mental health (p = 0.017) in women. Subgrouping of participants based on the above four SNPs revealed significant interactions between these SNPs and the SF-36 scores of general health (p = 0.045), role emotional (p = 0.008), and mental health (p = 0.019) and increased serum CoQ10 levels (p = 0.008), suggesting that the benefits of CoQ10 supplementation, especially in terms of psychological parameters, are genotype-dependent in women. However, significant interactions were not observed in men. Therefore, inclusion of SNP subgrouping information in clinical trials of CoQ10 supplementation may provide conclusive evidence supporting other beneficial health effects exerted by the association between these SNPs and CoQ10 on women.
Collapse
Affiliation(s)
- Michiyo Takahashi
- Graduate School of Human Ecology, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan;
| | - Tetsu Kinoshita
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan; (T.K.); (K.M.)
- Social Epidemiology Institute, Institute of Community Life Science Co., Ltd., 1383-2 Hiramachi, Matsuyama 791-0243, Ehime, Japan
| | - Koutatsu Maruyama
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan; (T.K.); (K.M.)
| | - Toshikazu Suzuki
- Graduate School of Human Ecology, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan;
- Department of Health and Nutrition, Wayo Women’s University, 2-3-1 Konodai, Ichikawa 272-8533, Chiba, Japan
- Correspondence: ; Tel.: +81-47-371-1547
| |
Collapse
|
2
|
Makran M, Barberá R, Cilla A. Gene-diet interaction in plasma lipid response to plant sterols and stanols: A review of clinical trials. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
3
|
Abdullah MMH, Vazquez-Vidal I, Baer DJ, House JD, Jones PJH, Desmarchelier C. Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence. Nutrients 2021; 13:695. [PMID: 33671529 PMCID: PMC7926676 DOI: 10.3390/nu13020695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The number of nutrigenetic studies dedicated to the identification of single nucleotide polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has increased considerably over the last decade. However, the robustness of the evidence-based science supporting the area remains to be evaluated. The objective of this review was to present recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol metabolism and transport, and dietary intakes or interventions on circulating cholesterol concentrations, which are causally involved in cardiovascular diseases and established biomarkers of cardiovascular health. We identified recent studies (2014-2020) that reported significant SNP-diet interactions in 14 cholesterol-related genes (NPC1L1, ABCA1, ABCG5, ABCG8, APOA1, APOA2, APOA5, APOB, APOE, CETP, CYP7A1, DHCR7, LPL, and LIPC), and which replicated associations observed in previous studies. Some studies have also shown that combinations of SNPs could explain a higher proportion of variability in response to dietary interventions. Although some findings still need replication, including in larger and more diverse study populations, there is good evidence that some SNPs are consistently associated with differing circulating cholesterol concentrations in response to dietary interventions. These results could help clinicians provide patients with more personalized dietary recommendations, in order to lower their risk for cardiovascular disease.
Collapse
Affiliation(s)
| | - Itzel Vazquez-Vidal
- Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - David J. Baer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Peter J. H. Jones
- Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada;
| | | |
Collapse
|
4
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
5
|
Torregrosa-Crespo J, Montero Z, Fuentes JL, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar Drugs 2018; 16:E203. [PMID: 29890662 PMCID: PMC6025630 DOI: 10.3390/md16060203] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine.
Collapse
Affiliation(s)
- Javier Torregrosa-Crespo
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Zaida Montero
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Juan Luis Fuentes
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Manuel Reig García-Galbis
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, Copayapu 2862, CP 1530000 Copiapó, Chile.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Rosa María Martínez-Espinosa
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
6
|
Unno K, Noda S, Kawasaki Y, Iguchi K, Yamada H. Possible Gender Difference in Anti-stress Effect of β-Cryptoxanthin. YAKUGAKU ZASSHI 2016; 136:1255-62. [PMID: 27592828 DOI: 10.1248/yakushi.16-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Unno
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shigenori Noda
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yohei Kawasaki
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazuaki Iguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroshi Yamada
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
7
|
Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar Drugs 2015; 13:5508-32. [PMID: 26308012 PMCID: PMC4584337 DOI: 10.3390/md13095508] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/02/2022] Open
Abstract
The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.
Collapse
Affiliation(s)
- Montserrat Rodrigo-Baños
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - María José Bonete
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|