1
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2025; 62:4139-4148. [PMID: 39400857 PMCID: PMC11880064 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
He KL, Yu X, Xia L, Xie YD, Qi EB, Wan L, Hua XM, Jing CH. A new perspective on the regulation of neuroinflammation in intracerebral hemorrhage: mechanisms of NLRP3 inflammasome activation and therapeutic strategies. Front Immunol 2025; 16:1526786. [PMID: 40083546 PMCID: PMC11903264 DOI: 10.3389/fimmu.2025.1526786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Intracerebral hemorrhage (ICH), a specific subtype within the spectrum of stroke disorders, is characterized by its high mortality and significant risk of long-term disability. The initiation and progression of neuroinflammation play a central and critical role in the pathophysiology of ICH. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a protein complex involved in initiating inflammation, is the central focus of this article. Microglia and astrocytes play critical roles in the inflammatory damage process associated with neuroinflammation. The NLRP3 inflammasome is expressed within both types of glial cells, and its activation drives these cells toward a pro-inflammatory phenotype, which exacerbates inflammatory damage in the brain. However, the regulatory relationship between these two cell types remains to be explored. Targeting NLRP3 inflammasomes in microglia or astrocytes may provide an effective approach to mitigate neuroinflammation following ICH. This article first provides an overview of the composition and activation mechanisms of the NLRP3 inflammasome. Subsequently, it summarizes recent research findings on novel signaling pathways that regulate NLRP3 inflammasome activity. Finally, we reviewed recent progress in NLRP3 inflammasome inhibitors, highlighting the clinical translation potential of certain candidates. These inhibitors hold promise as innovative strategies for managing inflammation following ICH.
Collapse
Affiliation(s)
- Kai-long He
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan-dong Xie
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - En-bo Qi
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu-ming Hua
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chao-hui Jing
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhao Y, Han B, Wei Z, Li Y, Yao Y, Song C, Duan Y. Discovery of a potent, Highly selective, and In vivo anti-inflammatory Efficacious, P2Y 6R antagonist with a novel quinoline-pyrazole scaffold. Eur J Med Chem 2024; 279:116890. [PMID: 39341096 DOI: 10.1016/j.ejmech.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
The P2Y6 receptor (P2Y6R), as a crucial member of the purine family, is a potential therapeutic target for the treatment of intestinal inflammation, tracheal inflammation and diabetes. We first discovered the hit compound (5a, IC50 = 168.5 nM against P2Y6R) through our in-house library screening. Then, further medicinal chemistry efforts were made to optimize compound 5a, and a potent P2Y6R antagonist (5 ab) with better antagonistic activity (IC50 = 19.6 nM) was obtained. The molecular docking, CETSA, SPR and pull-down results indicated that compound 5 ab displayed strong binding to P2Y6R. Also, compound 5 ab possessed high selectivity and satisfying oral bioactivity and pharmacokinetic profiles. In experiments with LPS-induced acute lung injury in mice, after treatment with compound 5 ab, the level of inflammatory factors IL-6, TNF-α and IL-β were considerably decreased, the infiltration of immune cells was decreased. Further exploration revealed that 5 ab inhibited the expression and release of chemokines in lung tissue, suppressing the activation of the NLRP3 inflammasome. Compound 5 ab had certain anti-inflammatory abilities in vivo and in vitro. These results demonstrate that compound 5 ab is a potential P2Y6R antagonist and is worthy of further study.
Collapse
Affiliation(s)
- Yabiao Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyi Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanzhe Li
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
4
|
Li Y, Tu H, Zhang S, Ding Z, Wu G, Piao J, Lv D, Hu L, Li F, Wang Q. P2Y6 Receptor Activation Aggravates NLRP3-dependent Microglial Pyroptosis via Downregulation of the PI3K/AKT Pathway in a Mouse Model of Intracerebral Hemorrhage. Mol Neurobiol 2024; 61:4259-4277. [PMID: 38079109 DOI: 10.1007/s12035-023-03834-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 07/11/2024]
Abstract
Pro-inflammatory signals generated after intracerebral hemorrhage (ICH) trigger a form of regulated cell death known as pyroptosis in microglia. White matter injury (WMI) refers to the condition where the white matter area of the brain suffers from mechanical, ischemic, metabolic, or inflammatory damage. Although the p2Y purinoceptor 6 (P2Y6R) plays a significant role in the control of inflammatory reactions in central nervous system diseases, its roles in the development of microglial pyroptosis and WMI following ICH remain unclear. In this study, we sought to clarify the role of P2Y6R in microglial pyroptosis and WMI by using an experimental mouse model of ICH. Type IV collagenase was injected into male C57BL/6 mice to induce ICH. Mice were then treated with MRS2578 and LY294002 to inhibit P2Y6R and phosphatidylinositol 3-kinase (PI3K), respectively. Bio-conductivity analysis was performed to examine PI3K/AKT pathway involvement in microglial pyroptosis. Quantitative Real-Time PCR, immunofluorescence staining, and western blot were conducted to examine microglial pyroptosis and WMI following ICH. A modified Garcia test, corner turning test, and forelimb placement test were used to assess neurobehavior. Hematoxylin-eosin staining (HE) was performed to detect cells damage around hematoma. Increases in the expression of P2Y6R, NLRP3, ASC, Caspase-1, and GSDMD were observed after ICH. P2Y6R was only expressed on microglia. MRS2578, a specific inhibitor of P2Y6R, attenuated short-term neurobehavioral deficits, brain edema and hematoma volume while improving both microglial pyroptosis and WMI. These changes were accompanied by decreases in pyroptosis-related proteins and pro-inflammatory cytokines both in vivo and vitro. Bioinformatic analysis revealed an association between the PI3K/AKT pathway and P2Y6R-mediated microglial pyroptosis. The effects of MRS2578 were partially reversed by treatment with LY294002, a specific PI3K inhibitor. P2Y6R inhibition alleviates microglial pyroptosis and WMI and ameliorates neurological deficits through the PI3K/AKT pathway after ICH. Consequently, targeting P2Y6R might be a promising approach for ICH treatment.
Collapse
Affiliation(s)
- Yulong Li
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Huiru Tu
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shengfan Zhang
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Guiwei Wu
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jifeng Piao
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Dingyi Lv
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Libin Hu
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Feng Li
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Qinghua Wang
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, Hu Q. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J 2024; 45:268-283. [PMID: 38036416 DOI: 10.1093/eurheartj/ehad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND AND AIMS Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cβ/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS Macrophage P2Y6R regulates phospholipase Cβ/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.
Collapse
Affiliation(s)
- Yehong Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Chunxiao Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Yuxin Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Xinli Dong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Hui Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| |
Collapse
|
6
|
Milde S, Brown GC. Knockout of the P2Y 6 Receptor Prevents Peri-Infarct Neuronal Loss after Transient, Focal Ischemia in Mouse Brain. Int J Mol Sci 2022; 23:2304. [PMID: 35216419 PMCID: PMC8879728 DOI: 10.3390/ijms23042304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
After stroke, there is a delayed neuronal loss in brain areas surrounding the infarct, which may in part be mediated by microglial phagocytosis of stressed neurons. Microglial phagocytosis of stressed or damaged neurons can be mediated by UDP released from stressed neurons activating the P2Y6 receptor on microglia, inducing microglial phagocytosis of such neurons. We show evidence here from a small trial that the knockout of the P2Y6 receptor, required for microglial phagocytosis of neurons, prevents the delayed neuronal loss after transient, focal brain ischemia induced by endothelin-1 injection in mice. Wild-type mice had neuronal loss and neuronal nuclear material within microglia in peri-infarct areas. P2Y6 receptor knockout mice had no significant neuronal loss in peri-infarct brain areas seven days after brain ischemia. Thus, delayed neuronal loss after stroke may in part be mediated by microglial phagocytosis of stressed neurons, and the P2Y6 receptor is a potential treatment target to prevent peri-infarct neuronal loss.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
| |
Collapse
|
7
|
Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int J Mol Sci 2021; 22:ijms22115818. [PMID: 34072307 PMCID: PMC8199265 DOI: 10.3390/ijms22115818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
A change in microglia structure, signaling, or function is commonly associated with neurodegeneration. This is evident in the patient population, animal models, and targeted in vitro assays. While there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration. Rather, the dynamics imply a close interaction between the various cell types and structures in the brain that orchestrate the injury and repair responses. Communication between microglia and neurons contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and allows the cells to respond to events occurring in their environment. Interactions between microglia and astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit; however, given the influence of systemic factors on neuroinflammation and disease progression, such interactions likely represent significant contributes to any neurodegenerative process. In addition, they offer multiple target sites/processes by which environmental exposures could contribute to neurodegenerative disease. Thus, microglia at least play a role as a significant other with an equal partnership; however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
Collapse
|
8
|
Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells 2020; 9:cells9071595. [PMID: 32630251 PMCID: PMC7407337 DOI: 10.3390/cells9071595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The purinergic receptor P2Y6 is expressed in immune cells, including the microglia that are implicated in neurological disorders. Its ligand, UDP, is a signaling molecule that can serve as an “find-me” signal when released in significant quantities by damaged/dying cells. The binding of UDP by P2Y6R leads to the activation of different biochemical pathways, depending on the disease context and the pathological environment. Generally, P2Y6R stimulates phagocytosis. However, whether or not phagocytosis coincides with cell activation or the secretion of pro-inflammatory cytokines needs further investigation. The current review aims to discuss the various functions of P2Y6R in some CNS disorders. We present evidence that P2Y6R may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, radiation-induced brain injury, and neuropathic pain.
Collapse
|
9
|
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience 2018; 405:137-147. [PMID: 30582977 DOI: 10.1016/j.neuroscience.2018.12.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Microglia are the main resident immune-competent cell type of the central nervous system (CNS); these cells are highly sensitive to subtle changes in the chemical environment of the brain. Microglia are activated during diverse conditions, such as apoptosis, trauma, inflammation, and infection. The specific activities of microglia result from the confluence of environmental stimuli and the cellular state. It is likely that several signaling systems with different biological functions operate in competition and/or synergy, thus regulating similar microglial behaviors. The purinergic system is one of the fundamental signaling systems that establish microglial behavior in a wide spectrum of conditions. Adenosine tri-phosphate (ATP) belongs to the purinergic signaling system, which includes P2X, P2Y, and P1 receptors, as well as other proteins participating in ATP secretion and extracellular ATP degradation, and molecules that recognize purines as a ligand. In this review, we focus on the latest pre-clinical and basic purinergic system and microglial research, with particular attention to data collected in vivo and ex vivo. This chapter is divided into sections related to microglial ATP release, ATP degradation, and ATP-related actions mediated by P2X and P2Y receptor activation.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
10
|
Jiang T, Li G, Xu J, Gao S, Chen X. The Challenge of the Pathogenesis of Parkinson's Disease: Is Autoimmunity the Culprit? Front Immunol 2018; 9:2047. [PMID: 30319601 PMCID: PMC6170625 DOI: 10.3389/fimmu.2018.02047] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
The role of autoimmunity in Parkinson's disease (PD), as one of the most popular research subjects, has been intensively investigated in recent years. Although the ultimate cause of PD is unknown, one major area of interest remains identifying new therapeutic targets and options for patients suffering from PD. Herein, we present a comprehensive review of the impacts of autoimmunity in neurodegenerative diseases, especially PD, and we have composed a logical argument to substantiate that autoimmunity is actively involved in the pathogenesis of PD through several proteins, including α-synuclein, DJ-1, PINK1, and Parkin, as well as immune cells, such as dendritic cells, microglia, T cells, and B cells. Furthermore, a detailed analysis of the relevance of autoimmunity to the clinical symptoms of PD provides strong evidence for the close correlation of autoimmunity with PD. In addition, the previously identified relationships between other autoimmune diseases and PD help us to better understand the disease pattern, laying the foundation for new therapeutic solutions to PD. In summary, this review aims to integrate and present currently available data to clarify the pathogenesis of PD and discuss some controversial but innovative research perspectives on the involvement of autoimmunity in PD, as well as possible novel diagnostic methods and treatments based on autoimmunity targets.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| | - Gen Li
- Department of Neurology & Institute of Neurology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| |
Collapse
|
11
|
Shi JP, Wang SY, Chen LL, Zhang XY, Zhao YH, Du B, Jiang WZ, Qian M, Ren H. P2Y6 contributes to ovalbumin-induced allergic asthma by enhancing mast cell function in mice. Oncotarget 2018; 7:60906-60918. [PMID: 27590515 PMCID: PMC5308625 DOI: 10.18632/oncotarget.11758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Extracelluar nucleotides have been identified as regulatory factors in asthmatic pathogenesis by activating purinergic receptors. This research aimed to investigate the function of the purinergic receptor P2Y6 in mediating airway inflammation in allergic asthma. Wild-type (WT) and P2Y6-deficient mice were stimulated with ovalbumin (OVA) to construct asthmatic mouse models. Overexpression of P2Y6 and uridine 5'-diphosphate (UDP)-releasing were demonstrated in lung tissues in ovalbumin-induced asthmatic mice. The release of the cytokine IL-4, mast cell invasion, and the airway remodeling phenotypes were more severe following the application of UDP in asthmatic mice. However, P2Y6 deficiency reduced these asthmatic pathogeneticsymptoms markedly in a mouse model. In vitro, we found that P2Y6 in purified mast cells enhanced the functions of mast cells in the inflammatory response in the asthmatic process by triggering their capability for migration, cytokine secretion and granule release. Moreover, P2Y6 stimulated the function of mast cells through activation of the AKT signaling pathway. Our data provides evidence that P2Y6 contributes to allergic airway inflammation and remodeling by enhancing the functions of mast cells in ovalbumin-induced asthmatic mice.
Collapse
Affiliation(s)
- Jue-Ping Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Shao-Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Li-Li Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Xiao-Yu Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Yi-Han Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Wen-Zheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| |
Collapse
|
12
|
Wang W, Chen M, Gao Y, Song X, Zheng H, Zhang K, Zhang B, Chen D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem 2017; 119:1889-1898. [PMID: 28815725 DOI: 10.1002/jcb.26350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Migration of skeletal muscle precursor cells is required for limb muscle development and skeletal muscle repair. This study aimed to examine the role of P2Y6 receptor in C2C12 myoblasts migration. C2C12 myoblasts were treated with P2Y6 agonist UDP, P2Y6 antagonist MRS2578, Ca2+ channel blocker BTP2, or ROCK inhibitor GSK269962 or Y27632, and the migration ability of C2C12 cells was assessed by wound healing assay. The cellular Ca2+ content was analyzed with fluo-4 probe and the activation of ROCK (phosphorlyation of LIMK and cofilin) was assayed by western blot. The cytoskeleton was labeled with Actin-Tracker Green and Tubulin-Tracker-Red. Silencing P2Y6 expression in C2C12 myoblasts reduced intracellular Ca2+ content and cell motility. Whereas UDP increased cellular Ca2+ content, actin filaments, and cell migration, MRS2578 had the opposite effects. The effects of UDP were abrogated by BTP2 and GSK269962 (and Y27632). Disruption of P2Y6 signaling pathway caused C2C12 myoblasts to have an elongated morphology. These results demonstrated that P2Y6 signaled through Ca2+ influx and RhoA/ROCK to reorganize cytoskeleton and promote migration in myoblasts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengjie Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingna Gao
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianmin Song
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghui Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, Chen S, Xiao Q. Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. J Neuroinflammation 2017; 14:38. [PMID: 28219441 PMCID: PMC5319038 DOI: 10.1186/s12974-017-0795-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Microglia in the central nervous system (CNS) were reported to play crucial role in neurodegeneration. Previous studies showed that P2Y6 receptor (P2Y6R) mainly contributed to microglia activation and phagocytosis in CNS. However, the level of P2Y6R in Parkinson's disease (PD) patients is unclear. Therefore, we measured the level of P2Y6R in PD patients and speculated whether it could be a potential biomarker for PD. Given on the basis that P2Y6R was higher in PD patients, we further explored the mechanisms underlying P2Y6R in the pathogenesis of PD. METHODS We tested the expression level of P2Y6R in the peripheral blood mononuclear cells (PBMCs) among 145 PD patients, 170 healthy controls, and 30 multiple system atrophy (MSA) patients. We also used a lipopolysaccharide (LPS)-stimulated microglial cell culture model to investigate (i) the effects of LPS on P2Y6R expression with western blot and RT-PCR, (ii) the effects of LPS on UDP expression using HPLC, (iii) the effects of UDP/P2Y6R signaling on cytokine expression using western blot, RT-PCR, and ELISA, and (iv) the signaling pathways activated by the P2Y6R involved in the neuroinflammation. RESULTS Expression levels of P2Y6R in PD patients were higher than healthy controls and MSA patients. P2Y6R could be a good biomarker of PD. P2Y6R was also upregulated in LPS-treated BV-2 cells and involved in proinflammatory cytokine release through an autocrine loop based on LPS-triggered UDP secretion and accelerated neuroinflammatory responses through the ERK1/2 pathway. Importantly, blocking UDP/P2Y6R signaling could reverse these pathological processes. CONCLUSIONS P2Y6R may be a potential clinical biomarker of PD. Blocking P2Y6R may be a potential therapeutic approach to the treatment of PD patients through inhibition of microglia-activated neuroinflammation.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yue Lou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guidong Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xueping Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Sil P, Hayes CP, Reaves BJ, Breen P, Quinn S, Sokolove J, Rada B. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals. THE JOURNAL OF IMMUNOLOGY 2016; 198:428-442. [PMID: 27903742 DOI: 10.4049/jimmunol.1600766] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/23/2016] [Indexed: 12/27/2022]
Abstract
Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.
Collapse
Affiliation(s)
- Payel Sil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Craig P Hayes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Barbara J Reaves
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Patrick Breen
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602
| | - Shannon Quinn
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, 30602 GA
| | - Jeremy Sokolove
- Stanford University School of Medicine, Stanford, CA 94305; and.,Internal Medicine and Rheumatology, VA Palo Alto Health Care System, Palo Alto, CA 94034
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|
15
|
Zhu J, Wang Z, Zhang N, Ma J, Xu SL, Wang Y, Shen Y, Li YH. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia. Neurochem Res 2015; 41:795-803. [DOI: 10.1007/s11064-015-1754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023]
|
16
|
Hao Y, Liang JF, Chow AW, Cheung WT, Ko WH. P2Y6 receptor-mediated proinflammatory signaling in human bronchial epithelia. PLoS One 2014; 9:e106235. [PMID: 25243587 PMCID: PMC4171090 DOI: 10.1371/journal.pone.0106235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl- secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such "cytokine networks" play an important role in sustaining the airway inflammatory disease.
Collapse
Affiliation(s)
- Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jocelyn F. Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Alison W. Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wing-tai Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wing-hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
- * E-mail:
| |
Collapse
|
17
|
Haas M, Ginsburg-Shmuel T, Fischer B, Reiser G. 5-OMe-uridine-5'-O-(α-boranodiphosphate), a novel nucleotide derivative highly active at the human P2Y(6) receptor protects against death-receptor mediated glial apoptosis. Neurosci Lett 2014; 578:80-4. [PMID: 24970757 DOI: 10.1016/j.neulet.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/27/2022]
Abstract
P2Y receptors are activated by nucleotides and involved in numerous physiological/pathophysiological processes. However, investigations of specific P2Y receptor functions have been hampered by lack of suitable receptor agonists-antagonists. Recently, we identified the nucleotide 5-OMe-UDP as potent and selective agonist for human P2Y6 receptors. We studied a series of derivatives of this analog with a Pα-borano group substituting a non-bridging oxygen and found increased potency and receptor specificity. Rp-5-OMe-UDPαB (Rp-5-OMe-uridine 5'-O-α-boranodiphosphate) was most potent and selective in inducing intracellular calcium signaling in 1321N1 astrocytoma cells expressing the human P2Y6 receptor. Here, we investigated whether Rp-5-OMe-UDPαB evokes cell protection through human P2Y6 receptors. We tested a well-established model, tumor necrosis factor α (TNFα)-induced cell death in 1321N1 astrocytoma cells. Rp-5-OMe-UDPαB inhibited TNFα-induced cell death even stronger than UDP. These first data of a neuro-protective activity of the human P2Y6 receptor emphasize the potential of the stable, selective, and potent Rp-5-OMe-UDPαB analog for exploiting P2Y6 receptor-mediated cellular functions, like cytoprotection in human tissues, with suitability for future neuro-protective drug development.
Collapse
Affiliation(s)
- Michael Haas
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke Universität, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Tamar Ginsburg-Shmuel
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Georg Reiser
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke Universität, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
18
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
19
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation. Mol Neurobiol 2012; 46:96-113. [PMID: 22467178 DOI: 10.1007/s12035-012-8263-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system. Attracted by factors released from damaged cells, microglia are recruited towards the damaged or infected site, where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris. ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury. However, the mechanisms of the long-range migration of microglia remain to be clarified. Here, we found that lysosomes in microglia contain abundant ATP and exhibit Ca(2+)-dependent exocytosis in response to various stimuli. By establishing an efficient in vitro chemotaxis assay, we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia, a response that was significantly inhibited in microglia treated with an agent inducing lysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice), a small GTPase required for the trafficking and exocytosis of secretory lysosomes. These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis, thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.
Collapse
|
22
|
Lau WKH, Chow AWM, Au SCL, Ko WH. Differential inhibitory effects of CysLT(1) receptor antagonists on P2Y(6) receptor-mediated signaling and ion transport in human bronchial epithelia. PLoS One 2011; 6:e22363. [PMID: 21799837 PMCID: PMC3142161 DOI: 10.1371/journal.pone.0022363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/23/2011] [Indexed: 01/30/2023] Open
Abstract
Background Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT1 receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT1 and P2Y6 receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT1 receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. Methodology/Principal Findings In this study, western blot analysis confirmed that both CysLT1 and P2Y6 receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT1 antagonists inhibited the uridine diphosphate (UDP)-evoked ISC, but only montelukast inhibited the UDP-evoked [Ca2+]i increase. In the presence of forskolin or 8-bromoadenosine 3′5′ cyclic monophosphate (8-Br-cAMP), the UDP-induced ISC was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked ISC potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8-CPT-2′-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2′-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced ISC potentiated by N6- Phenyladenosine- 3′, 5′- cyclic monophosphorothioate, Sp- isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. Conclusions/Significance In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT1 receptor antagonists exert differential inhibitory effects on P2Y6 receptor-coupled Ca2+ signaling pathways and the potentiating effect on ISC mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia.
Collapse
Affiliation(s)
- Wendy Ka-hoi Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alison Wai-ming Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Chak-leung Au
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|