1
|
Xu L, Zhang R, Xue R, Wang L, Ai Z, Li L, Wu W, Wang Z. Regional cerebral blood perfusion impairment in type 1 narcolepsy patients: An arterial spin labeling study. Sleep Med 2025; 129:122-130. [PMID: 40022862 DOI: 10.1016/j.sleep.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE To investigate the pathophysiological characteristics of cerebral blood flow (CBF) in patients with narcolepsy type 1 (NT1) via the arterial spin labeling (ASL) technique. METHODS Thirty patients with diagnostic NT1 (PTs) and 34 age- and sex-matched healthy controls (HCs) were recruited for this study. Basic information was collected, and clinical evaluation and neuroimaging, including ASL and T1-3DBRAVO, was performed. The z-normalized CBF (zCBF) and spatial coefficient of variation (sCoV) were calculated, and the changes in NT1 were compared via analysis of covariate (ANCOVA). Furthermore, spearman's correlation analysis between impaired regional perfusion and clinical features was performed. Age, sex, and normalized grey matter volume were included as covariates. RESULTS Compared with that of HCs, the zCBF of PTs significantly differed in regions of fronto-temporal-occipital cortex, right insula and posterior insula, and left rostral/dorsal anterior cingulate gyrus (ACG) (P < 0.006). Moreover, the sCoV was significantly altered in the frontotemporal cortex, rostral ACG, right hippocampus, and posterior insula (P < 0.003). In PTs, positive correlations were identified between the zCBF of the right superior/middle frontal gyrus (SFG/MFG) and mean sleep latency, and between the zCBF of the left SFG of the frontal pole and sleep hallucination severity. Moreover, the sCoV of the right MFG/hippocampus were positively associated with Rapid Eye Movement efficiency and negatively associated with Hamilton Anxiety Scale score, respectively. CONCLUSION PTs exhibited abnormal regional perfusion in the frontal-temporal-occipital cortex and limbic system regions, which may serve as patient-specific imaging markers. Alterations in perfusion may lead to the clinical manifestations of underlying psychological and sleep disorders in PTs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lili Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, China.
| |
Collapse
|
2
|
Chen M, Gao M, Ma J, Lee TMC. Intrinsic brain functional connectivity mediates the relationship between psychological resilience and cognitive decline in ageing. GeroScience 2025:10.1007/s11357-025-01529-5. [PMID: 39899190 DOI: 10.1007/s11357-025-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Ageing individuals often experience cognitive decline and intrinsic functional connectivity (FC) changes. Psychological resilience, a personality trait that reflects the capacity to adapt and cope with age-related challenges, plays a key role in mitigating cognitive decline. In this study involving 101 older adults, we investigated how psychological resilience influences cognitive decline measured by processing speed. Particularly, we obtained resting-state functional magnetic resonance imaging (fMRI) to assess how intrinsic FC, represented by degree centrality, modulates the relationship between resilience and processing speed. Our results indicated while psychological resilience positively predicted processing speed, this relationship was mainly driven by education. Additionally, the degree centrality of both thalamus and caudate negatively correlated with processing speed and resilience. Notably, the degree centrality of both thalamus and caudate significantly mediated the relationship between resilience and processing speed. These findings suggest that psychological resilience could protect against age-related cognitive decline via its influence on FC in the thalamus and caudate, highlighting these areas as potential intervention targets for reducing cognitive decline in ageing people.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Junji Ma
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Ji S, An W, Zhang J, Zhou C, Liu C, Yu H. The different impacts of functional network centrality and connectivity on the complexity of brain signals in healthy control and first-episode drug-naïve patients with major depressive disorder. Brain Imaging Behav 2025; 19:111-123. [PMID: 39532824 DOI: 10.1007/s11682-024-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
In recent years, brain signal complexity has gained attention as an indicator of brain well-being and a predictor of disease and dysfunction. Brain entropy quantifies this complexity. Assessment of functional network centrality and connectivity reveals that information communication induces neural signal oscillations in certain brain regions. However, their relationship is uncertain. This work studied brain signal complexity, network centrality, and connectivity in both healthy and depressed individuals. The current work comprised a sample of 124 first-episode drug-naïve patients with major depressive disorder (MDD) and 105 healthy controls (HC). Six functional networks were created for each person using resting-state functional magnetic resonance imaging. For each network, entropy, centrality, and connectivity were computed. Using structural equation modeling, this study examined the associations between brain network entropy, centrality, and connectivity. The findings demonstrated substantial correlations of entropy with both centrality and connectivity in HC and these correlation patterns were disrupted in MDD. Compared to HC, MDD exhibited higher entropy in four networks and demonstrated changes in centralities across all networks. The structural equation modeling showed that network centralities, connectivity, and depression severity had impacts on brain entropy. Nevertheless, no impacts were observed in the opposite directions. This study indicated that the complexity of brain signals was influenced not only by the interactions among different areas of the brain but also by the severity level of depression. These findings enhanced our comprehension of the associations of brain entropy with its influential factors.
Collapse
Affiliation(s)
- Shanling Ji
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China
| | - Wei An
- Medical Imaging Department, Shandong Daizhuang Hospital, Shandong, China
| | - Jing Zhang
- Second Department of Psychiatry, Shandong Daizhuang Hospital, Shandong, China
| | - Cong Zhou
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China
| | - Chuanxin Liu
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China.
| | - Hao Yu
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China.
| |
Collapse
|
4
|
Gao W, Biswal B, Zhou X, Xiao Z, Yang J, Li Y, Yuan J. Altered default-mode and frontal-parietal network pattern underlie adaptiveness of emotion regulation flexibility following task-switch training. Soc Cogn Affect Neurosci 2024; 19:nsae077. [PMID: 39575823 PMCID: PMC11642612 DOI: 10.1093/scan/nsae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024] Open
Abstract
Emotion regulation flexibility (ERF) refers to one's ability to respond flexibly in complex environments. Adaptiveness of ERF has been associated with cognitive flexibility, which can be improved by task-switching training. However, the impact of task-switching training on ERF and its underlying neural mechanisms remain unclear. To address this issue, we examined the effects of training on individuals' adaptiveness of ERF by assessing altered brain network patterns. Two groups of participants completed behavioral experiments and resting-state fMRI before and after training. Behavioral results showed higher adaptiveness scores and network analysis observed a higher number of connectivity edges, in the training group compared to the control group. Moreover, we found decreased connectivity strength within the default mode network (DMN) and increased connectivity strength within the frontoparietal network (FPN) in the training group. Furthermore, the task-switch training also led to decreased DMN-FPN interconnectivity, which was significantly correlated to increased adaptiveness of ERF scores. These findings suggest that the adaptiveness of ERF can be supported by altered patterns with the brain network through task-switch training, especially the increased network segregation between the DMN and FPN.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Xinqi Zhou
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jiemin Yang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yanping Li
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - JiaJin Yuan
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
5
|
Zhang H, Xu L, Ai Z, Wang L, Wang L, Li L, Zhang R, Xue R, Wang Z. The brain topological alterations in the structural connectome and correlations with clinical characteristics in type 1 narcolepsy. Neuroimage Clin 2024; 44:103697. [PMID: 39509991 PMCID: PMC11574789 DOI: 10.1016/j.nicl.2024.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE To explore topological alterations of white matter (WM) structural connectome, and their associations with clinical characteristics in type 1 narcolepsy (NT1). METHODS 46 NT1 patients and 34 age- and sex-matched healthy controls were recruited for clinical data and diffusion tensor imaging collection. Using graph theory analysis, the topology metrics of structural connectome, rich club organization, and connectivity properties were compared between two groups. Furthermore, partial correlation analysis was performed between the network characteristics of 90 nodes or weakened edges and clinical data using Pearson or Spearman correlation, controlling by age and sex. RESULTS Between-group comparison reflected that NT1 patients exhibited sleep disorders with comorbidities of impaired cognition and psychological problems. In patients, the global efficiency, local efficiency, and average clustering coefficient were significantly lower, whereas characteristic path length was larger compared to healthy control. Pertinently, nodal path length of left middle frontal gyrus was positively correlated with Pittsburgh Sleep Quality Index scores. The rich club analysis identified six affected nodes: bilateral dorsolateral superior frontal gyrus, bilateral supplementary motor area, left hippocampus, and left pallidum. Furthermore, six significantly weakened structural connections seeding from these rich club nodes have shown significant correlations with clinical index or polysomnography parameters. CONCLUSION In NT1 patients, WM structural connectome has shown to be disrupted, which were primarily distributed in frontal-parietal cortex, subcortical regions, and particularly cingulate, potentially affecting their clinical manifestations.
Collapse
Affiliation(s)
- Huiqin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077, China
| | - Lili Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Thieux M, Lioret J, Bouet R, Guyon A, Lachaux JP, Herbillon V, Franco P. Behavioral and Electrophysiological Markers of Attention Fluctuations in Children with Hypersomnolence. J Clin Med 2024; 13:5077. [PMID: 39274290 PMCID: PMC11395852 DOI: 10.3390/jcm13175077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Background. No device is yet available to effectively capture the attentional repercussions of hypersomnolence (HYP). The present study aimed to compare attentional performance of children with HYP, attention deficit hyperactivity disorder (ADHD), and controls using behavioral and electrophysiological (EEG) markers, and to assess their relationship with conventional sleepiness measurements. Methods. Children with HYP underwent a multiple sleep latency test (MSLT) and completed the adapted Epworth sleepiness scale (AESS). Along with age-matched children with ADHD, they were submitted to a resting EEG followed by the Bron-Lyon Attention Stability Test (BLAST). The control group only performed the BLAST. Multivariate models compared reaction time (RT), error percentage, BLAST-Intensity, BLAST-Stability, theta activity, and theta/beta ratio between groups. Correlations between these measures and conventional sleepiness measurements were conducted in children with HYP. Results. Children with HYP had lower RT and BLAST-Stability than controls but showed no significant difference in BLAST/EEG markers compared to children with ADHD. The AESS was positively correlated with the percentage of errors and negatively with BLAST-Intensity. Conclusions. Children with HYP showed impulsivity and attention fluctuations, without difference from children with ADHD for BLAST/EEG markers. The BLAST-EEG protocol could be relevant for the objective assessment of attentional fluctuations related to hypersomnolence.
Collapse
Affiliation(s)
- Marine Thieux
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
- Unité de Sommeil Pédiatrique, Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Lyon, France
| | - Julien Lioret
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
- Unité de Sommeil Pédiatrique, Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Lyon, France
| | - Romain Bouet
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
| | - Aurore Guyon
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
- Unité de Sommeil Pédiatrique, Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Lyon, France
| | - Jean-Philippe Lachaux
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
| | - Vania Herbillon
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
- Unité de Sommeil Pédiatrique, Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Lyon, France
| | - Patricia Franco
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500 Lyon, France
- Unité de Sommeil Pédiatrique, Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 69500 Lyon, France
| |
Collapse
|
7
|
Wenhong C, Xiaoying M, Lingli S, Binyun T, Yining W, Mingming Z, Yian L, Lixia Q, Wenyu H, Fengjin P. Assessing resting-state brain functional connectivity in adolescents and young adults with narcolepsy using functional near-infrared spectroscopy. Front Hum Neurosci 2024; 18:1373043. [PMID: 38606200 PMCID: PMC11007108 DOI: 10.3389/fnhum.2024.1373043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
This study aimed to elucidate the alterations in the prefrontal cortex's functional connectivity and network topology in narcolepsy patients using functional near-infrared spectroscopy (fNIRS). Twelve narcolepsy-diagnosed patients from Guangxi Zhuang Autonomous Region's People's Hospital Sleep Medicine Department and 11 matched healthy controls underwent resting fNIRS scans. Functional connectivity and graph theory analyses were employed to assess the prefrontal cortex network's properties and their correlation with clinical features. Results indicated increased functional connectivity in these adolescent and young adult patients with narcolepsy, with significant variations in metrics like average degree centrality and node efficiency, particularly in the left middle frontal gyrus. These alterations showed correlations with clinical symptoms, including depression and sleep efficiency. However, the significance of these findings was reduced post False Discovery Rate adjustment, suggesting a larger sample size is needed for validation. In conclusion, the study offers initial observations that alterations in the prefrontal cortex's functional connectivity may potentially act as a neurobiological indicator of narcolepsy, warranting further investigation with a larger cohort to substantiate these findings and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Chen Wenhong
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Mo Xiaoying
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shi Lingli
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Tang Binyun
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Wen Yining
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zhao Mingming
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lu Yian
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qin Lixia
- Guangxi Clinical Reserch Center for Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hu Wenyu
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Pan Fengjin
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
8
|
Li C, Spruyt K, Xie L, Zhang C, Xu Z, Han F. Development and validation of the narcolepsy severity scale in school aged children. Sleep Med 2023; 110:17-24. [PMID: 37517284 DOI: 10.1016/j.sleep.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To develop and psychometrically test the pediatric narcolepsy severity scale (P-NSS) for pediatric with narcolepsy type 1 (NT1). METHODS Item pool was formed based on literature review, clinical judgement of the expert panel and input of the narcoleptic patients and their parents. Psychometric properties were evaluated after applying the P-NSS in a sample of 200 patients (8-18 years age) with narcolepsy. Analyses included item analysis, validity analysis and reliability analysis. RESULTS P-NSS consisted four factors with a total of 17 items. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) revealed four distinct and theoretically coherent factors, explaining 63.4% of the total variance. The fitting results of the CFA model were χ2/dƒ = 2.235, GFI = 0.876, AGFI = 0.822, RMSEA = 0.079, TLI = 0.908, CFI = 0.927. P-NSS score is correlated with Pediatric Daytime Sleepiness Scale (r = 0.512, P < 0.01), Epworth Sleepiness Scale for Children and Adolescents (r = 0.355, P < 0.01) and Narcolepsy quality-of-life instrument with 21 questions (r = -0.512, P < 0.01). Cronbach's α coefficient for P-NSS and four dimensions were from 0.732 to 0.915. The split-half reliability was 0.882 (P < 0.01). CONCLUSION P-NSS is proved to be a reliable and valid measure for Chinese children with NT1. It may serve in China as a valuable and easily accessible outcome measure for using in narcolepsy trials, the clinic with improved responsiveness and long term follow-up.
Collapse
Affiliation(s)
- Chenyang Li
- Capital Medical University School of Nursing, Beijing, China; Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Karen Spruyt
- NeuroDiderot INSERM, Université de Paris, Paris, France
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chi Zhang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Zhifei Xu
- Respiratory Department, Beijing Children's Hospital, Beijing, China
| | - Fang Han
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
9
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
10
|
Lv Z, Li Y, Wang Y, Cong F, Li X, Cui W, Han C, Wei Y, Hong X, Liu Y, Ma L, Jiao Y, Zhang C, Li H, Jin M, Wang L, Ni S, Liu J. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial. Stem Cell Res Ther 2023; 14:23. [PMID: 36759901 PMCID: PMC9910250 DOI: 10.1186/s13287-022-03234-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/05/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are believed to have the most therapeutic potential for neurological disorders because they can differentiate into various neurons and glial cells. This research evaluated the safety and efficacy of intranasal administration of NSCs in children with cerebral palsy (CP). The functional brain network (FBN) analysis based on electroencephalogram (EEG) and voxel-based morphometry (VBM) analysis based on T1-weighted images were performed to evaluate functional and structural changes in the brain. METHODS A total of 25 CP patients aged 3-12 years were randomly assigned to the treatment group (n = 15), which received an intranasal infusion of NSCs loaded with nasal patches and rehabilitation therapy, or the control group (n = 10) received rehabilitation therapy only. The primary endpoints were the safety (assessed by the incidence of adverse events (AEs), laboratory and imaging examinations) and the changes in the Gross Motor Function Measure-88 (GMFM-88), the Activities of Daily Living (ADL) scale, the Sleep Disturbance Scale for Children (SDSC), and some adapted scales. The secondary endpoints were the FBN and VBM analysis. RESULTS There were only four AEs happened during the 24-month follow-up period. There was no significant difference in the laboratory examinations before and after treatment, and the magnetic resonance imaging showed no abnormal nasal and intracranial masses. Compared to the control group, patients in the treatment group showed apparent improvements in GMFM-88 and ADL 24 months after treatment. Compared with the baseline, the scale scores of the Fine Motor Function, Sociability, Life Adaptability, Expressive Ability, GMFM-88, and ADL increased significantly in the treatment group 24 months after treatment, while the SDSC score decreased considerably. Compared with baseline, the FBN analysis showed a substantial decrease in brain network energy, and the VBM analysis showed a significant increase in gray matter volume in the treatment group after NSCs treatment. CONCLUSIONS Our results showed that intranasal administration of NSCs was well-tolerated and potentially beneficial in children with CP. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov (NCT03005249, registered 29 December 2016, https://www. CLINICALTRIALS gov/ct2/show/NCT03005249 ) and the Medical Research Registration Information System (CMR-20161129-1003).
Collapse
Affiliation(s)
- Zhongyue Lv
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Ying Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yachen Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Fengyu Cong
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China ,grid.9681.60000 0001 1013 7965Faculty of Information Technology, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Xiaoyan Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Wanming Cui
- grid.452435.10000 0004 1798 9070Department of Ent, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chao Han
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yushan Wei
- grid.452435.10000 0004 1798 9070Scientific Research Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Xiaojun Hong
- grid.452435.10000 0004 1798 9070Neurophysiological Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yong Liu
- grid.452435.10000 0004 1798 9070Department of Rehabilitation, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Luyi Ma
- grid.452435.10000 0004 1798 9070Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yang Jiao
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China ,grid.452435.10000 0004 1798 9070Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chi Zhang
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huanjie Li
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning China
| | - Mingyan Jin
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Liang Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Shiwei Ni
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, Liaoning, China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China.
| |
Collapse
|
11
|
Li Z, Hou X, Lu Y, Zhao H, Wang M, Xu B, Shi Q, Gui Q, Wu G, Shen M, Zhu W, Xu Q, Dong X, Cheng Q, Zhang J, Feng H. Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI. Front Neurosci 2023; 16:1031163. [PMID: 36741055 PMCID: PMC9889547 DOI: 10.3389/fnins.2022.1031163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Objective To investigate the changes of brain network in epilepsy patients without intracranial lesions under resting conditions. Methods Twenty-six non-lesional epileptic patients and 42 normal controls were enrolled for BOLD-fMRI examination. The differences in brain network topological characteristics and functional network connectivity between the epilepsy group and the healthy controls were compared using graph theory analysis and independent component analysis. Results The area under the curve for local efficiency was significantly lower in the epilepsy patients compared with healthy controls, while there were no differences in global indicators. Patients with epilepsy had higher functional connectivity in 4 connected components than healthy controls (orbital superior frontal gyrus and medial superior frontal gyrus, medial superior frontal gyrus and angular gyrus, superior parietal gyrus and paracentral lobule, lingual gyrus, and thalamus). In addition, functional connectivity was enhanced in the default mode network, frontoparietal network, dorsal attention network, sensorimotor network, and auditory network in the epilepsy group. Conclusion The topological characteristics and functional connectivity of brain networks are changed in in non-lesional epilepsy patients. Abnormal functional connectivity may suggest reduced brain efficiency in epilepsy patients and also may be a compensatory response to brain function early at earlier stages of the disease.
Collapse
Affiliation(s)
- Zhisen Li
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Xiaoxia Hou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Yanli Lu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Huimin Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Meixia Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Bo Xu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Qianru Shi
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Mingqiang Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Wei Zhu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Qinrong Xu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Jibin Zhang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, China,*Correspondence: Hongxuan Feng,
| |
Collapse
|
12
|
Wu L, Zhan Q, Liu Q, Xie S, Tian S, Xie L, Wu W. Abnormal Regional Spontaneous Neural Activity and Functional Connectivity in Unmedicated Patients with Narcolepsy Type 1: A Resting-State fMRI Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15482. [PMID: 36497558 PMCID: PMC9738657 DOI: 10.3390/ijerph192315482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Previous Resting-state functional magnetic resonance imaging (fMRI) studies have mainly focused on cerebral functional alteration in processing different emotional stimuli in patients with narcolepsy type 1 (NT1), but were short of exploration of characteristic brain activity and its remote interaction patterns. This study aimed to investigate the spontaneous blood oxygen fluctuations at rest and to elucidate the neural mechanisms underlying neuropsychiatric behavior. METHOD A total of 18 unmedicated patients with NT1 and matched healthy individuals were recruited in a resting-state fMRI study. Magnetic resonance imaging (MRI) data were first analyzed using fractional low-frequency amplitude of low-frequency fluctuation (fALFF) to detect changes in local neural activity, and regions with group differences were taken as regions of interest (ROIs). Secondly, functional connectivity (FC) analysis was used to explore altered connectivity between ROIs and other areas. Lastly, the relationship between functional brain activity and neuropsychiatric behaviors was analyzed with correlation analysis. RESULTS fALFF analysis revealed enhanced neural activity in bilateral fusiform gyrus (FFG), right precentral gyrus, and left postcentral gyrus (PoCG) in the NT1 group. The patients indicated reduced activity in the bilateral temporal pole middle temporal gyrus (TPOmid), left caudate nucleus (CAU), left parahippocampus, left precuneus (PCUN), right amygdala, and right anterior cingulate and paracingulate gyri. ESS score was negatively correlated with fALFF in the right FFG. The NT1 group revealed decreased connectivity between left TPOmid and right PoCG, the bilateral middle frontal gyrus, left superior frontal gyrus, medial, and right supramarginal gyrus. Epworth Sleepiness Scale (ESS) was negatively correlated with FC of the left TPOmid with left putamen (PUT) in NT1. Compared with healthy controls (HCs), enhanced FC of the left CAU with right FFG was positively associated with MSLT-SOREMPs in patients. Furthermore, increased FC of the left PCUN with right PoCG was positively correlated with SDS score. CONCLUSIONS We found that multiple functional activities related to the processing of emotional regulation and sensory information processing were abnormal, and some were related to clinical characteristics. fALFF in the left postcentral or right precentral gyrus may be used as a biomarker of narcolepsy, whereas fALFF in the right fusiform and the FC strength of the left temporal pole middle temporal gyrus with the putamen may be clinical indicators to assess the drowsiness severity of narcolepsy.
Collapse
Affiliation(s)
- Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qian Liu
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suheng Xie
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Parrino L, Halasz P, Szucs A, Thomas RJ, Azzi N, Rausa F, Pizzarotti S, Zilioli A, Misirocchi F, Mutti C. Sleep medicine: Practice, challenges and new frontiers. Front Neurol 2022; 13:966659. [PMID: 36313516 PMCID: PMC9616008 DOI: 10.3389/fneur.2022.966659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep medicine is an ambitious cross-disciplinary challenge, requiring the mutual integration between complementary specialists in order to build a solid framework. Although knowledge in the sleep field is growing impressively thanks to technical and brain imaging support and through detailed clinic-epidemiologic observations, several topics are still dominated by outdated paradigms. In this review we explore the main novelties and gaps in the field of sleep medicine, assess the commonest sleep disturbances, provide advices for routine clinical practice and offer alternative insights and perspectives on the future of sleep research.
Collapse
Affiliation(s)
- Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- *Correspondence: Liborio Parrino
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szucs
- Department of Behavioral Sciences, National Institute of Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Nicoletta Azzi
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Li Z, Huang J, Wei W, Jiang S, Liu H, Luo H, Ruan J. EEG Oscillatory Networks in Peri-Ictal Period of Absence Epilepsy. Front Neurol 2022; 13:825225. [PMID: 35547382 PMCID: PMC9081722 DOI: 10.3389/fneur.2022.825225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the dynamical brain network changes before and after an absence seizure episode in absence epilepsy (AE). Methods 21 AE patients with a current high frequency of seizures and 21 sex- and age-matched health control (HC) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were included. Each included subject underwent a 2-h and 19-channel video EEG examination. For AE patients, five epochs of 10-s EEG data in inter-ictal, pre-ictal, and post-ictal states were collected. For the HC group, five 10-s resting-state EEG epochs were extracted. Functional independent components analysis (ICA) was carried out using the LORETA KEY tool. Results Compared with the resting-state EEG data of the HC group, the EEG data from AE patients during inter-ictal periods showed decreased alpha oscillations in regions involving the superior frontal gyrus (SFG) (BA11). From inter-ictal to pre-ictal, SFG (BA10) showed maximum decreased delta oscillations. Additionally, from pre-ictal to post-ictal, superior temporal gyrus (STG) (BA 22) presented maximum increased neural activity in the alpha band. Moreover, compared with inter-ictal EEG, post-ictal EEG showed significantly decreased theta activity in SFG (BA8). Conclusion The changes in SFG alpha oscillations are the key brain network differences between inter-ictal EEG of AE patients and resting-state EEG of HCs. The brain networks of EEG oscillatory during peri-ictal episodes are mainly involving SFG and STG. Our study suggests that altered EEG brain networks dynamics exist between inter-ictal EEG of AE patients and resting-state EEG of HCs and between pre- and post-ictal EEG in AE patients.
Collapse
Affiliation(s)
- Zhiye Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jialing Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Sili Jiang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
15
|
Shang Y, Yang Y, Zheng G, Zhao Z, Wang Y, Yang L, Han L, Yao Z, Hu B. Aberrant functional network topology and effective connectivity in burnout syndrome. Clin Neurophysiol 2022; 138:163-172. [DOI: 10.1016/j.clinph.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
|
16
|
Miao G, Rao B, Wang S, Fang P, Chen Z, Chen L, Zhang X, Zheng J, Xu H, Liao W. Decreased Functional Connectivities of Low-Degree Level Rich Club Organization and Caudate in Post-stroke Cognitive Impairment Based on Resting-State fMRI and Radiomics Features. Front Neurosci 2022; 15:796530. [PMID: 35250435 PMCID: PMC8890030 DOI: 10.3389/fnins.2021.796530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundStroke is an important cause of cognitive impairment. Rich club organization, a highly interconnected network brain core region, is closely related to cognition. We hypothesized that the disturbance of rich club organization exists in patients with post-stroke cognitive impairment (PSCI).MethodsWe collected data on resting-state functional magnetic resonance imaging (rs-fMRI) with 21 healthy controls (HC), 16 hemorrhagic stroke (hPSCI), and 21 infarct stroke (iPSCI). 3D shape features and first-order statistics of stroke lesions were extracted using 3D slicer software. Additionally, we assessed cognitive function using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE).ResultsNormalized rich club coefficients were higher in hPSCI and iPSCI than HC at low-degree k-levels (k = 1–8 in iPSCI, k = 2–8 in hPSCI). Feeder and local connections were significantly decreased in PSCI patients versus HC, mainly distributed in salience network (SN), default-mode network (DMN), cerebellum network (CN), and orbitofrontal cortex (ORB), especially involving the right and left caudate with changed nodal efficiency. The feeder and local connections of significantly between-group difference were positively related to MMSE and MoCA scores, primarily distributed in the sensorimotor network (SMN) and visual network (VN) in hPSCI, SN, and DMN in iPSCI. Additionally, decreased local connections and low-degree ϕnorm(k) were correlated to 3D shape features and first-order statistics of stroke lesions.ConclusionThis study reveals the disrupted low-degree level rich club organization and relatively preserved functional core network in PSCI patients. Decreased feeder and local connections in cognition-related networks (DMN, SN, CN, and ORB), particularly involving the caudate nucleus, may offer insight into pathological mechanism of PSCI patients. The shape and signal features of stroke lesions may provide an essential clue for the damage of functional connectivity and the whole brain networks.
Collapse
Affiliation(s)
- Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pinyan Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Zhuo Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Haibo Xu,
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Weijing Liao,
| |
Collapse
|
17
|
Ni K, Liu Y, Zhu X, Tan H, Zeng Y, Guo Q, Xiao L, Yu B. Changed Cerebral White Matter Structural Network Topological Characters and Its Correlation with Cognitive Behavioral Abnormalities in Narcolepsy Type 1. Nat Sci Sleep 2022; 14:165-173. [PMID: 35140538 PMCID: PMC8818963 DOI: 10.2147/nss.s336967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE In the current study we investigated topological abnormalities of the cerebral white matter networks in narcolepsy type 1 (NT1) patients and its relationship with their cognitive abnormalities using diffusion tensor imaging (DTI) technology. METHODS DTI and the Beijing version of the Montreal Cognitive Assessment (MoCA-BJ) were applied to 30 NT1 patients and 30 age-matched healthy controls. DTI studies were also carried using the 3T MRI system. Next, DTI data was used to establish a cerebral white matter network for all subjects and graph theory was applied to analyze the topological characteristics of the white matter structural network. Topographical parameters (such as local efficiency (Eloc), global efficiency (Eglob) and small-world (σ)) between NT1 patients and controls were then compared. The correlation between MoCA-BJ scores and topological parameters was also analyzed. RESULTS MoCA-BJ scores in NT1 patients were lower than those in the healthy controls. Compared with healthy controls, the global efficiency of the white matter network and attributes of the small world network were significantly reduced in NT1 patients. Finally, the global efficiency of the white matter structural network was related to the MoCA-BJ score of NT1 patients. CONCLUSION The abnormal topological characteristics of the white matter structural network in NT1 patients may be associated with their cognitive impairment.
Collapse
Affiliation(s)
- Kunlin Ni
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Yishu Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Xiaoyu Zhu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Huiwen Tan
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Yin Zeng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Li Xiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Bing Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| |
Collapse
|
18
|
Zhou Y, Liu Z, Sun Y, Zhang H, Ruan J. Altered EEG Brain Networks in Patients with Acute Peripheral Herpes Zoster. J Pain Res 2021; 14:3429-3436. [PMID: 34754236 PMCID: PMC8570286 DOI: 10.2147/jpr.s329068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate whether the brain networks changed in patients with acute peripheral herpes zoster (HZ). METHODS We reviewed the EEG database in Jianyang People's Hospital. Patients with acute HZ (n=71) were enrolled from January 2016 to December 2020. Each included subject underwent a ten-minute and 16-channel EEG examination. Five epochs of 10-second EEG data in resting-state were collected from each HZ patient. Five 10-second resting-state EEG epochs from sex- and age-matched healthy controls (HC, n=71) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were collected. Brain network and graph theory analysis based on phase locking value parameter and functional ICA were performed using a self-writing Matlab code and the LORETA KEY tool. RESULTS Compared with the HC group, the HZ patients showed significant altered brain networks. The graph theory analysis revealed that the clustering coefficient and local efficiency of full band in HZ patients were lower than those in HC group (P<0.05). In beta band, the global efficiency and local efficiency of HZ patients group decreased, compared with healthy group (P<0.05). The functional ICA showed that three components showed significant differences between the two groups. In component 2, HZ patients showed excess superior frontal gyrus (BA10) neuro oscillation in delta band and less medial frontal gyrus (BA 11) neuro oscillation in beta and gamma bands than that in HCs. And for component 3, the alpha band of the HZ patients presented increased neuro activities in superior frontal gyrus (BA 11) and decreased neuro activities in occipital lobe (BA 18). In component 4, the inferior frontal gyrus (BA 47) showed excess activity in the left hemisphere and reduced activity in the right hemisphere in delta band, compared with HC group. CONCLUSION Altered brain networks exist in resting-state EEG data of patients with acute HZ. The changes of EEG brain networks in HZ patients are characterized by decreased global efficiency and local efficiency in beta band. Moreover, the spontaneous oscillation of some brain regions involving pain management and the connectivity of default mode network changed in HZ patients. Our study provided novel understanding of HZ from an electrophysiological view, and led to converging evidence for treatment of HZ with neural regulation in future.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Neurology, Jianyang People’s Hospital, Jianyang, 641400, People’s Republic of China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, People’s Republic of China
| | - Zhenqin Liu
- Department of Dermatology, Jianyang People’s Hospital, Jianyang, 641400, People’s Republic of China
| | - Yuanmei Sun
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400010, People’s Republic of China
| | - Hao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, People’s Republic of China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
19
|
Pregnancy leads to changes in the brain functional network: a connectome analysis. Brain Imaging Behav 2021; 16:811-819. [PMID: 34590214 DOI: 10.1007/s11682-021-00561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Pregnancy leads to long-lasting changes in human brain structure; however, little is known regarding alterations in the topological organization of functional networks. In this study, we investigated the effect of pregnancy on human brain function networks. Resting-state fMRI data was collected from eighteen primiparous mothers and twenty-four nulliparous control women of similar age, education level and body mass index (BMI). The functional brain network and topological properties were calculated by using GRETNA toolbox. The demographic data differences between two groups were computed by the independent two sample t-test. We tested group differences in network metrics' area under curve (AUC) using non-parametric permutation test of 1,000 permutations and corrected for false discovery rate (FDR). Differences in regional networks between groups were evaluated using non-parametric permutation tests by network-based statistical analysis (NBS). Compared with the nulliparous control women, a hub node changed from left inferior temporal gyrus to right precentral gyrus in primiparous mothers, while primiparous mothers showed enhanced network global efficiency (p = 0.247), enhanced local efficiency (p = 0.410), larger clustering coefficient (p = 0.410), but shorter characteristic path length (p = 0.247), smaller normalized clustering coefficient (p = 0.111), and shorter normalized characteristic path length (p = 0.705). Although both groups of functional networks have small-world property (σ > 1), the σ values of primiparous mothers were decreased significantly. NBS evaluation showed the majority of altered connected sub-network in the primiparous mothers occurred in the bilateral frontal lobe gyrus (p < 0.05). Altered functional network metrics and an abnormal sub-network were found in primiparous mothers, suggested that pregnancy may lead to changes in the brain functional network.
Collapse
|
20
|
Ballotta D, Talami F, Pizza F, Vaudano AE, Benuzzi F, Plazzi G, Meletti S. Hypothalamus and amygdala functional connectivity at rest in narcolepsy type 1. Neuroimage Clin 2021; 31:102748. [PMID: 34252875 PMCID: PMC8278207 DOI: 10.1016/j.nicl.2021.102748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION functional and structural MRI studies suggest that the orexin (hypocretin) deficiency in the dorso-lateral hypothalamus of narcoleptic patients would influence both brain metabolism and perfusion and would cause reduction in cortical grey matter. Previous fMRI studies have mainly focused on cerebral functioning during emotional processing. The aim of the present study was to explore the hemodynamic behaviour of spontaneous BOLD fluctuation at rest in patients with Narcolepsy type 1 (NT1) close to disease onset. METHODS Fifteen drug naïve children/adolescents with NT1 (9 males; mean age 11.7 ± 3 years) and fifteen healthy children/adolescents (9 males; mean age 12.4 ± 2.8 years) participated in an EEG-fMRI study in order to investigate the resting-state functional connectivity of hypothalamus and amygdala. Functional images were acquired on a 3 T system. Seed-based functional connectivity analyses were performed using SPM12. Regions of Interest were the lateral hypothalamus and the amygdala. RESULTS compared to controls, NT1 patients showed decreased functional connectivity between the lateral hypothalamus and the left superior parietal lobule, the hippocampus and the parahippocampal gyrus. Decreased functional connectivity was detected between the amygdala and the post-central gyrus and several occipital regions, whereas it was increased between the amygdala and the inferior frontal gyrus, claustrum, insula, and putamen. CONCLUSION in NT1 patients the abnormal connectivity between the hypothalamus and brain regions involved in memory consolidation during sleep, such as the hippocampus, may be linked to the loss of orexin containing neurons in the dorsolateral hypothalamus. Moreover, also functional connectivity of the amygdala seems to be influenced by the loss of orexin-containing neurons. Therefore, we can hypothesize that dysfunctional interactions between regions subserving the maintenance of arousal, memory and emotional processing may contribute to the main symptom of narcolepsy.
Collapse
Affiliation(s)
- Daniela Ballotta
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, AUSL of Bologna, Italy
| | | | - Francesca Benuzzi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; IRCCS Istituto delle Scienze Neurologiche, AUSL of Bologna, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy.
| |
Collapse
|
21
|
Trotti LM, Saini P, Crosson B, Meltzer CC, Rye DB, Nye JA. Regional brain metabolism differentiates narcolepsy type 1 and idiopathic hypersomnia. Sleep 2021; 44:6161267. [PMID: 33693888 DOI: 10.1093/sleep/zsab050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY OBJECTIVES Daytime sleepiness is a manifestation of multiple sleep and neurologic disorders. Few studies have assessed patterns of regional brain metabolism across different disorders of excessive daytime sleepiness. One such disorder, idiopathic hypersomnia (IH), is particularly understudied. METHODS People with IH, narcolepsy (NT1), and non-sleepy controls underwent [ 18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) with electroencephalography (EEG). Participants were instructed to resist sleep and were awoken if sleep occurred. Voxel-wise parametric analysis identified clusters that significantly differed between each pair of groups, with a minimum cluster size of 100 voxels at a cluster detection threshold of p < 0.005. Correlations between glucose metabolism and sleep characteristics were evaluated. RESULTS Participants (77% women) had IH (n = 16), NT1 (n = 14), or were non-sleepy controls (n = 9), whose average age was 33.8 (+/-10.7) years. Compared to controls, NT1 participants demonstrated hypermetabolism in fusiform gyrus, middle occipital gyrus, superior and middle temporal gyri, insula, cuneus, precuneus, pre- and post-central gyri, and culmen. Compared to controls, IH participants also demonstrated hypermetabolism in precuneus, inferior parietal lobule, superior and middle temporal gyri, and culmen. Additionally, IH participants demonstrated altered metabolism of the posterior cingulate. Most participants fell asleep. Minutes of N1 during uptake was significantly negatively correlated with metabolism of the middle temporal gyrus. CONCLUSION NT1 and IH demonstrate somewhat overlapping, but distinct, patterns of regional metabolism.
Collapse
Affiliation(s)
- Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine.,Emory Sleep Center, Emory Healthcare
| | - Prabhjyot Saini
- Department of Neurology, Emory University School of Medicine
| | - Bruce Crosson
- Department of Neurology, Emory University School of Medicine.,Alanta Veterans Affairs Center for Visual and Neurocognitive Rehabilitation
| | - Carolyn C Meltzer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
| | - David B Rye
- Department of Neurology, Emory University School of Medicine.,Emory Sleep Center, Emory Healthcare
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
| |
Collapse
|
22
|
Li C, Spruyt K, Zhang C, Zuo Y, Shang S, Dong X, Ouyang H, Zhang J, Han F. Reliability and validity of the Chinese version of Narcolepsy Severity Scale in adult patients with narcolepsy type 1. Sleep Med 2021; 81:86-92. [PMID: 33640842 DOI: 10.1016/j.sleep.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate reliability and validity of the Chinese version of Narcolepsy Severity Scale (NSS) in adult patients with narcolepsy type 1 (NT1). METHODS One hundred and fifty-one adult patients (≥18 years) with NT1 were recruited. All filled out the 15-item Chinese version of NSS. Item analysis included critical ratio and correlation analysis. The validity of NSS was assessed by exploratory factor analysis, discriminant validity and convergent validity. Reliability of NSS was assessed by Cronbach's α coefficient, spilt-half reliability and test-retest reliability. RESULTS Critical value of all 15 items ranged from 3.01 to 13.36. Each item was significantly correlated with the total score by a correlation coefficient (r) ranging from 0.219 to 0.700. Three common domains were extracted and 15 items explained 54.86% of the total variance. There was a shift in domains compared to the English version likely due to cultural differences. Cronbach's α coefficient for the total scale of 15 items was 0.821 and for three factors was 0.726, 0.748 and 0.760 respectively. The NSS had good correlation with Epworth sleepiness scale scores, Insomnia severity index scores and moderate correlation with mean the sleep latency of polysomnographic recording, and European Quality of Life-5 Dimensions Questionnaire. The Chinese version of NSS showed good spilt-half reliability and test-retest reliability. CONCLUSION The Chinese version of NSS shows satisfactory psychometric properties with good validity and reliability. It is applicable to evaluate the severity and consequences of symptoms in Chinese adult patients with NT1.
Collapse
Affiliation(s)
- Chenyang Li
- Peking University School of Nursing, Beijing, China
| | | | - Chi Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yuhua Zuo
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | | | - Xiaosong Dong
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
23
|
Zhu X, Ni K, Tan H, Liu Y, Zeng Y, Yu B, Guo Q, Xiao L. Abnormal Brain Network Topology During Non-rapid Eye Movement Sleep and Its Correlation With Cognitive Behavioral Abnormalities in Narcolepsy Type 1. Front Neurol 2021; 11:617827. [PMID: 33505350 PMCID: PMC7829333 DOI: 10.3389/fneur.2020.617827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) were applied to investigate the abnormalities in the topological characteristics of functional brain networks during non-rapid eye movement(NREM)sleep. And we investigated its relationship with cognitive abnormalities in patients with narcolepsy type 1 (NT1) disorder in the current study. Methods: The Beijing version of the Montreal Cognitive Assessment (MoCA-BJ) and EEG-fMRI were applied in 25 patients with NT1 and 25 age-matched healthy controls. All subjects participated in a nocturnal video polysomnography(PSG)study, and total sleep time (TST), percentage of TST (%TST) for each sleep stage and arousal index were calculated. The Epworth Sleepiness Score (ESS) was used to measure the degree of daytime sleepiness. The EEG-fMRI study was performed simultaneously using a 3T MRI system and a 32-channel MRI-compatible EEG system during sleep. Visual scoring of EEG data was used for sleep staging. Cognitive function was assessed for all subjects using the MoCA-BJ. The fMRI data were applied to establish a whole-brain functional connectivity network for all subjects, and the topological characteristics of the whole-brain functional network were analyzed using a graph-theoretic approach. The topological parameters were compared between groups. Lastly, the correlation between topological parameters and the assessment scale using Montreal Cognition was analyzed. Results: The MoCA-BJ scores were lower in patients with NT1 than in normal controls. Whole-brain global efficiency during stage N2 sleep in patients with NT1 displayed significantly lower small-world properties than in normal controls. Whole-brain functional network global efficiency in patients with NT1 was significantly correlated with MoCA-BJ scores. Conclusion: The global efficiency of the functional brain network during stage N2 sleep in patients with NT1 and the correspondingly reduced small-world attributes were associated with cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kunlin Ni
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiwen Tan
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yishu Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yin Zeng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Xiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Gool JK, Cross N, Fronczek R, Lammers GJ, van der Werf YD, Dang-Vu TT. Neuroimaging in Narcolepsy and Idiopathic Hypersomnia: from Neural Correlates to Clinical Practice. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Järvelä M, Raatikainen V, Kotila A, Kananen J, Korhonen V, Uddin LQ, Ansakorpi H, Kiviniemi V. Lag Analysis of Fast fMRI Reveals Delayed Information Flow Between the Default Mode and Other Networks in Narcolepsy. Cereb Cortex Commun 2020; 1:tgaa073. [PMID: 34296133 PMCID: PMC8153076 DOI: 10.1093/texcom/tgaa073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022] Open
Abstract
Narcolepsy is a chronic neurological disease characterized by dysfunction of the hypocretin system in brain causing disruption in the wake-promoting system. In addition to sleep attacks and cataplexy, patients with narcolepsy commonly report cognitive symptoms while objective deficits in sustained attention and executive function have been observed. Prior resting-state functional magnetic resonance imaging (fMRI) studies in narcolepsy have reported decreased inter/intranetwork connectivity regarding the default mode network (DMN). Recently developed fast fMRI data acquisition allows more precise detection of brain signal propagation with a novel dynamic lag analysis. In this study, we used fast fMRI data to analyze dynamics of inter resting-state network (RSN) information signaling between narcolepsy type 1 patients (NT1, n = 23) and age- and sex-matched healthy controls (HC, n = 23). We investigated dynamic connectivity properties between positive and negative peaks and, furthermore, their anticorrelative (pos-neg) counterparts. The lag distributions were significantly (P < 0.005, familywise error rate corrected) altered in 24 RSN pairs in NT1. The DMN was involved in 83% of the altered RSN pairs. We conclude that narcolepsy type 1 is characterized with delayed and monotonic inter-RSN information flow especially involving anticorrelations, which are known to be characteristic behavior of the DMN regarding neurocognition.
Collapse
Affiliation(s)
- M Järvelä
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - V Raatikainen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - A Kotila
- Research Unit of Logopedics, University of Oulu, 90014 Oulu, Finland
| | - J Kananen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - V Korhonen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - L Q Uddin
- Department of Psychology, University of Miami, Coral Gables, 33124 FL, USA
| | - H Ansakorpi
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90014 Oulu, Finland
| | - V Kiviniemi
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|
26
|
Ma J, Liu F, Yang B, Xue K, Wang P, Zhou J, Wang Y, Niu Y, Zhang J. Selective Aberrant Functional-Structural Coupling of Multiscale Brain Networks in Subcortical Vascular Mild Cognitive Impairment. Neurosci Bull 2020; 37:287-297. [PMID: 32975745 DOI: 10.1007/s12264-020-00580-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/30/2020] [Indexed: 01/04/2023] Open
Abstract
Subcortical vascular mild cognitive impairment (svMCI) is a common prodromal stage of vascular dementia. Although mounting evidence has suggested abnormalities in several single brain network metrics, few studies have explored the consistency between functional and structural connectivity networks in svMCI. Here, we constructed such networks using resting-state fMRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls. The functional networks were then parcellated into topological modules, corresponding to several well-defined functional domains. The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level (whole brain and modular level). We found no significant intergroup differences in the functional-structural coupling within the whole brain; however, there was significantly increased functional-structural coupling within the dorsal attention module and decreased functional-structural coupling within the ventral attention module in the svMCI group. In addition, the svMCI patients demonstrated decreased intramodular connectivity strength in the visual, somatomotor, and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network, mainly linking the visual, somatomotor, dorsal attention, ventral attention, and frontoparietal control modules. There was no significant correlation between the altered module-level functional-structural coupling and cognitive performance in patients with svMCI. These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.
Collapse
Affiliation(s)
- Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pinxiao Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jian Zhou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yali Niu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
27
|
Dynamic Properties of Human Default Mode Network in Eyes-Closed and Eyes-Open. Brain Topogr 2020; 33:720-732. [PMID: 32803623 DOI: 10.1007/s10548-020-00792-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The default mode network (DMN) reflects spontaneous activity in the resting human brain. Previous studies examined the difference in static functional connectivity (sFC) of the DMN between eyes-closed (EC) and eyes-open (EO) using the resting-state functional magnetic resonance imaging (rs-fMRI) data. However, it remains unclear about the difference in dynamic FC (dFC) of the DMN between EC and EO. To this end, we acquired rs-fMRI data from 19 subjects in two different statues (EC and EO) and selected a seed region-of-interest (ROI) at the posterior cingulate cortex (PCC) to generate the sFC map. We identified the DMN consisting of ten clusters that were significantly correlated with the PCC. By using a sliding-window approach, we analyzed the dFC of the DMN. Then, the Newman's modularity algorithm was applied to identify dFC states based on nodal total connectivity strength in each sliding-window. In addition, graph-theory based network analysis was applied to detect dynamic topological properties of the DMN. We identified three group-level dFC states (State1, 2 and 3) that reflects the strength of dFC within the DMN between EC and EO in different time. The following results were reached: (1) no significant difference in sFC between EC and EO, (2) dFC was lower in State2 but higher in State3 in EC than in EO, (3) lower clustering coefficient, local efficiency, and global efficiency, but higher characteristic path length in State2 in EC than in EO, and (4) lower nodal strength in the precuneus (PCUN), PCC, angular gyrus (ANG), middle temporal gyrus (MTG) and medial prefrontal cortex (MPFC) in State3 in EC. These results suggested different resting statuses, EC and EO, may induce different time-varying neural activity in the DMN.
Collapse
|
28
|
Xu C, Yu J, Ruan Y, Wang Y, Chen Z. Decoding Circadian Rhythm and Epileptic Activities: Clues From Animal Studies. Front Neurol 2020; 11:751. [PMID: 32793110 PMCID: PMC7393483 DOI: 10.3389/fneur.2020.00751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
The relationship between circadian rhythm and epilepsy has been recognized for decades. Yet many questions underlying the complex mechanisms of their interaction remain elusive. A better understanding on this topic allows the development of accurate seizure-detection algorithm and alternative precise therapeutic strategies. Preclinical laboratory studies based on epileptic animal models, with controllable epileptogenic pathology and an array of intervention strategies, shed light on the bidirectional effects between circadian rhythm and epileptic seizures as well as their underlying mechanisms. Here, we reviewed findings on the interaction between circadian rhythm and epileptic seizures in the preclinical setting. We present the possible mechanisms at molecular, cellular and circuitry levels. We propose that future experimental designs should take into account the relationship between circadian rhythm and epilepsy as well as the underlying mechanisms in different types of animal models, which may have a translational significance as stepping stones for clinical benefits.
Collapse
Affiliation(s)
- Cenglin Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Jie Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yeping Ruan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Fulong X, Spruyt K, Chao L, Dianjiang Z, Jun Z, Fang H. Resting-state brain network topological properties and the correlation with neuropsychological assessment in adolescent narcolepsy. Sleep 2020; 43:5734536. [PMID: 32047928 DOI: 10.1093/sleep/zsaa018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Study Objectives
To evaluate functional connectivity and topological properties of brain networks, and to investigate the association between brain topological properties and neuropsychiatric behaviors in adolescent narcolepsy.
Methods
Resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessment were applied in 26 adolescent narcolepsy patients and 30 healthy controls. fMRI data were analyzed in three ways: group independent component analysis and a graph theoretical method were applied to evaluate topological properties within the whole brain. Lastly, network-based statistics was utilized for group comparisons in region-to-region connectivity. The relationship between topological properties and neuropsychiatric behaviors was analyzed with correlation analyses.
Results
In addition to sleepiness, depressive symptoms and impulsivity were detected in adolescent narcolepsy. In adolescent narcolepsy, functional connectivity was decreased between regions of the limbic system and the default mode network (DMN), and increased in the visual network. Adolescent narcolepsy patients exhibited disrupted small-world network properties. Regional alterations in the caudate nucleus (CAU) and posterior cingulate gyrus were associated with subjective sleepiness and regional alterations in the CAU and inferior occipital gyrus were associated with impulsiveness. Remodeling within the salience network and the DMN was associated with sleepiness, depressive feelings, and impulsive behaviors in narcolepsy.
Conclusions
Alterations in brain connectivity and regional topological properties in narcoleptic adolescents were associated with their sleepiness, depressive feelings, and impulsive behaviors.
Collapse
Affiliation(s)
- Xiao Fulong
- Department of General Internal Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Karen Spruyt
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, School of Medicine, University Claude Bernard, Lyon, France
| | - Lu Chao
- Department of Radiology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Zhao Dianjiang
- Department of Radiology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Zhang Jun
- Department of Neurology, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Han Fang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|