1
|
Verkhratsky A. Les lésions anciennes: Evolution conserves noradrenergic regulation of astroglial homeostatic support. Acta Physiol (Oxf) 2025; 241:e70032. [PMID: 40091358 DOI: 10.1111/apha.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country UPV/EHU, Biobizkaia and CIBERNED, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- International Joint Research Centre on Purinergic Signalling of Sichuan Province Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Celica, BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
2
|
PĘkowska A, Verkhratsky A, Falcone C. Evolution of neuroglia: From worm to man. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:7-26. [PMID: 40122633 DOI: 10.1016/b978-0-443-19104-6.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia are a highly diversified class of neural cells of ectodermal (astroglia; oligodendroglia, glia of the peripheral nervous system) and mesodermal (microglia) origin. Glial cells emerged at the earliest stages of the evolution of the nervous system, seemingly evolving several times in phylogeny. Initially, glial cells were associated with sensory organs, an arrangement conserved throughout the species from worms to humans. Enhanced complexity of the nervous system increased the need for homeostatic support, which, in turn, led to an increase in complexity, functional heterogeneity, and versatility of neuroglia. In the brain of primates, and especially in the brain of humans, astrocytes become exceedingly complex. Likewise, new types of astroglial cells involved in interlayer communication/integration have evolved in the primates evolutionary closer to humans. Increases in animal size and the density of interneuronal connections stimulated the development of the myelin sheath, which was critical for the evolution of the highly complex brains of humans. The innate brain tissue macrophages, the microglia, emerged in invertebrates such as leeches. Microglia conserved their transcriptomic, morphologic, and functional signatures throughout the animal kingdom.
Collapse
Affiliation(s)
- Aleksandra PĘkowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Carmen Falcone
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Neuroscience Department, SISSA, Trieste, Italy
| |
Collapse
|
3
|
Verkhratsky A, Hol EM, de Witte LD, Aronica E. Neuroglia in the healthy brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:1-5. [PMID: 40122619 DOI: 10.1016/b978-0-443-19104-6.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The nervous tissue is composed of neurons and neuroglia, which by working in a tightly coordinated manner, define the function of the nervous system. Neuroglia, defined as homeostatic and defensive cells of the nervous system, are highly heterogeneous in form and function and are endowed with a remarkable plasticity that allows life-long adaptation to environmental challenges. Neuroglia of the peripheral nervous system are represented by myelinating, nonmyelinating, perisynaptic, and cutaneous Schwann cells, satellite glia of sensory and sympathetic ganglia and enteric glia of the enteric nervous system. Neuroglia of the central nervous system (CNS) are classified into macroglia and microglia. Macroglia in turn are represented by astroglia and oligodendroglia. Astroglia represent an extended class of homeostatic glial cells, which include astrocytes (protoplasmic, fibrous, velate, and marginal), radial astrocytes (Bergmann glial cells, glia-like nervous stem cells, and tanycytes), and ependymoglia. The oligodendroglial lineage is mainly responsible for myelination and support of central axons and is represented by oligodendrocytes and oligodendrocyte precursor cells. Microglia are the cells of nonneural, myeloid origin that invade the neural tube early in embryonic development. These cells are tissue macrophages adapted to the nervous system requirements. Microglia contribute to physiology of the nervous tissue and to the innate immunity and defense of the CNS.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eleanora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Cheng H, Chen D, Li X, Al-Sheikh U, Duan D, Fan Y, Zhu L, Zeng W, Hu Z, Tong X, Zhao G, Zhang Y, Zou W, Duan S, Kang L. Phasic/tonic glial GABA differentially transduce for olfactory adaptation and neuronal aging. Neuron 2024; 112:1473-1486.e6. [PMID: 38447577 DOI: 10.1016/j.neuron.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Phasic (fast) and tonic (sustained) inhibition of γ-aminobutyric acid (GABA) are fundamental for regulating day-to-day activities, neuronal excitability, and plasticity. However, the mechanisms and physiological functions of glial GABA transductions remain poorly understood. Here, we report that the AMsh glia in Caenorhabditis elegans exhibit both phasic and tonic GABAergic signaling, which distinctively regulate olfactory adaptation and neuronal aging. Through genetic screening, we find that GABA permeates through bestrophin-9/-13/-14 anion channels from AMsh glia, which primarily activate the metabolic GABAB receptor GBB-1 in the neighboring ASH sensory neurons. This tonic action of glial GABA regulates the age-associated changes of ASH neurons and olfactory responses via a conserved signaling pathway, inducing neuroprotection. In addition, the calcium-evoked, vesicular glial GABA release acts upon the ionotropic GABAA receptor LGC-38 in ASH neurons to regulate olfactory adaptation. These findings underscore the fundamental significance of glial GABA in maintaining healthy aging and neuronal stability.
Collapse
Affiliation(s)
- Hankui Cheng
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Du Chen
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Xiao Li
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Umar Al-Sheikh
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Duo Duan
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yuedan Fan
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Linhui Zhu
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Wanxin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Hu
- Department of Neuroscience, City University of Hong Kong, Kowloon, China
| | - Xiajing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guohua Zhao
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yongming Zhang
- Department of Ophthalmology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wenjuan Zou
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Shumin Duan
- MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Lijun Kang
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
5
|
Tremblay MÈ, Verkhratsky A. General Pathophysiology of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:3-14. [PMID: 39207683 DOI: 10.1007/978-3-031-55529-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences,University of the Basque Country,, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Abstract
The evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed of electrically excitable neuronal networks connected by chemical synapses and nonexcitable glial cells that provide for homeostasis and defense. The evolution of neuroglia began with the emergence of the centralized nervous system and proceeded through a continuous increase in their complexity. In the primate brain, especially in the brain of humans, the astrocyte lineage is exceedingly complex, with the emergence of new types of astroglial cells possibly involved in interlayer communication and integration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Amaia M Arranz
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Katarzyna Ciuba
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Razzauti A, Laurent P. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 2021; 10:67670. [PMID: 34533135 PMCID: PMC8492061 DOI: 10.7554/elife.67670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs' budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.
Collapse
Affiliation(s)
- Adria Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| |
Collapse
|