1
|
Yin L, Cui L, Yu Y, Wang Q. A Heterogeneous Attractor Model for Neural Dynamical Mechanism of Movement Preparation. Int J Neural Syst 2025; 35:2550019. [PMID: 40170424 DOI: 10.1142/s0129065725500194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Preparatory activity is crucial for voluntary motor control, reducing reaction time and enhancing precision. To understand the neurodynamic mechanisms behind this, we construct a dynamical model within the motor cortex, which comprises coupled heterogeneous attractors to simulate delayed reaching tasks. This model replicates the neural activity patterns observed in the macaque motor cortex, within distinct attractor spaces for preparatory and executive activities. It can capture the transition from preparation to execution through shifts in an orthogonal subspace combined with a thresholding mechanism. Results show that the preparation duration modulates behavioral accuracy, with optimal preparation intervals enhancing performance. External inputs primarily shape the preparatory activity, while synaptic connections dominate execution. Our analysis of the network's multi-stable dynamics reveals that external inputs reshape the stable points of the heterogeneous attractor modules both before and after preparation, while synaptic strength affects dynamical stability and input sensitivity, allowing rapid and precise actions. Additionally, sensitivity to external perturbations decreases as preparatory time increases, emphasizing the importance of external inputs during preparation. Overall, this study provides insights into the neurodynamic mechanisms underlying the transition from motor preparation to execution and underscores the significance of preparatory activity for accurate motor control.
Collapse
Affiliation(s)
- Lining Yin
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Lanyun Cui
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
- Ningxia Basic Science Research Center of Mathematics, Ningxia University, Yinchuan, P. R. China
| |
Collapse
|
2
|
Zhang Y, Chen Y, Wang T, Cui H. Neural geometry from mixed sensorimotor selectivity for predictive sensorimotor control. eLife 2025; 13:RP100064. [PMID: 40310450 PMCID: PMC12045623 DOI: 10.7554/elife.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.
Collapse
Affiliation(s)
- Yiheng Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yun Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianwei Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
| | - He Cui
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
3
|
Zheng C, Wang Q, Cui H. Continuous sensorimotor transformation enhances robustness of neural dynamics to perturbation in macaque motor cortex. Nat Commun 2025; 16:3213. [PMID: 40180984 PMCID: PMC11968799 DOI: 10.1038/s41467-025-58421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Neural activity in the motor cortex evolves dynamically to prepare and generate movement. Here, we investigate how motor cortical dynamics adapt to dynamic environments and whether these adaptations influence robustness against disruptions. We apply intracortical microstimulation (ICMS) in the motor cortex of monkeys performing delayed center-out reaches to either a static target (static) or a rotating target (moving) that required interception. While ICMS prolongs reaction times (RTs) in the static condition, it does not increase RTs in the moving condition, correlating with faster recovery of neural population activity post-perturbation. Neural dynamics suggests that the moving condition involves ongoing sensorimotor transformations during the delay period, whereas motor planning in the static condition is completed shortly. A neural network model shows that continuous feedback input rapidly corrects perturbation-induced errors in the moving condition. We conclude that continuous sensorimotor transformations enhance the motor cortex's resilience to perturbations, facilitating timely movement execution.
Collapse
Affiliation(s)
- Cong Zheng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Qifan Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - He Cui
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Moreno A, de Lafuente V, Merchant H. Time Varying Encoding of Grasping Type and Force in the Primate Motor Cortex. eNeuro 2025; 12:ENEURO.0010-25.2025. [PMID: 40246551 PMCID: PMC12037165 DOI: 10.1523/eneuro.0010-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
The primary motor cortex (M1) is strongly engaged by movement planning and execution. However, the role of M1 activity in voluntary grasping is still not completely understood. Here we analyze recordings of M1 neurons during the execution of a delayed reach-to-grasp task, where monkeys had to actively grasp an object with either a side or a precision grip, and then pull it with a low or high amount of force. Single cell and neural populations analyses showed that grip type was robustly and specifically encoded by a large population of neurons, while force level was weakly and transiently encoded within mixed-selective neurons that also encoded grip type. Notably, the grip type was stably decoded from motor cortical populations during the preparation and execution epochs of the task. Our results are consistent with the idea that planning and performing specific grasping movements are high-level skills that strongly engage M1 neurons, while the execution of pulling force might be prominently encoded at lower stages of the motor system.
Collapse
Affiliation(s)
- Adriana Moreno
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro 76230, México
| | - Victor de Lafuente
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro 76230, México
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro 76230, México
| |
Collapse
|
5
|
Ianni GR, Vázquez Y, Rouse AG, Schieber MH, Prut Y, Freiwald WA. Facial gestures are enacted via a cortical hierarchy of dynamic and stable codes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641159. [PMID: 40161717 PMCID: PMC11952350 DOI: 10.1101/2025.03.03.641159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Successful communication requires the generation and perception of a shared set of signals. Facial gestures are one fundamental set of communicative behaviors in primates, generated through the dynamic arrangement of dozens of fine muscles. While much progress has been made uncovering the neural mechanisms of face perception, little is known about those controlling facial gesture production. Commensurate with the importance of facial gestures in daily social life, anatomical work has shown that facial muscles are under direct control from multiple cortical regions, including primary and premotor in lateral frontal cortex, and cingulate in medial frontal cortex. Furthermore, neuropsychological evidence from focal lesion patients has suggested that lateral cortex controls voluntary movements, and medial emotional expressions. Here we show that lateral and medial cortical face motor regions encode both types of gestures. They do so through unique temporal activity patterns, distinguishable well-prior to movement onset. During gesture production, cortical regions encoded facial kinematics in a context-dependent manner. Our results show how cortical regions projecting in parallel downstream, but each situated at a different level of a posterior-anterior hierarchy form a continuum of gesture coding from dynamic to temporally stable, in order to produce context-related, coherent motor outputs during social communication.
Collapse
|
6
|
Liu P, Yang X, Han F, Peng G, Li Q, Huang L, Wang L, Fan Y. Brain Activation Pattern Caused by Soft Rehabilitation Glove and Virtual Reality Scenes: A Pilot fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3848-3857. [PMID: 39418155 DOI: 10.1109/tnsre.2024.3482470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Clinical studies have proved significant improvements in hand motor function in stroke patients when assisted by robotic devices. However, there were few studies on neural activity changes in the brain during execution. This study aimed to investigate the brain activation pattern caused by soft rehabilitation glove and virtual reality scenes. Twenty healthy subjects and twenty stroke patients were recruited to complete three controlled trials: grasping passively with robotic glove assistance (RA), watching grasping movement video in virtual reality (VR), and the joint use of robotic glove and virtual reality (VRA). Neural activity in the prefrontal cortex, motor cortex and occipital lobe was synchronously collected by the functional near-infrared spectroscopy (fNIRS) device. Activation level and functional connectivity of these brain regions were subsequently calculated and statistically analyzed. For both groups, the VR and VRA tasks induced activation of larger cortical areas. Stroke group had higher average cortical activation in all three tasks compared to healthy group, especially in the prefrontal cortex ( [Formula: see text]). Functional connectivity was weaker in the stroke group than in the healthy group across most regions, but was significantly stronger across some regions of the right hemisphere. These findings suggest significant differences in activation patterns across three tasks. In addition, multi-sensory stimulation can promote functional communication between more brain regions in patients. It has potential for neuromodulation in rehabilitation training by setting up different sensory stimulation modalities.
Collapse
|
7
|
Pesce C, Tocci N. Creativity and consciousness in motion: The roundtrip of "mindful" and "mindless" processes in embodied creativity. PROGRESS IN BRAIN RESEARCH 2024; 287:123-151. [PMID: 39097351 DOI: 10.1016/bs.pbr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
In this opinion paper, we make a journey across different accounts of creativity that emphasize either the mindful, conscious and cognitive expression of creativity, or its mindless, unconscious and sensorimotor expression. We try to go beyond dichotomy, putting creativity in motion and outlining its embodied and enactive features. Based on the assumption that no creative act is purely conscious or purely unconscious, our discussion on creativity relies on the distinction of three types of creativity that complementarily contribute to the creative process through shifts in the activation of their substrates in the brain: the deliberate, spontaneous and flow types of creativity. The latter is a hybrid and embodied type, in which movement and physical activity meet creativity. We then focus on the most fascinating contribution of unconscious processes and mind wandering to spontaneous and flow modes of creativity, exploring what happens when the individual apparently takes a break from a deliberate and effortful search for solutions and the creative process progresses through an incubation phase. This phase and the overall creative process can be facilitated by physical activity which, depending on its features and context, can disengage the cognitive control network and free the mind from filters that constrain cognitive processes or, conversely, can engage attentional control on sensorimotor and cognitive task components in a mindful way. Lastly, we focus on the unique features of the outer natural environment of physical activity and of the inner environment during mindful movements that can restore capacities and boost creativity.
Collapse
Affiliation(s)
- Caterina Pesce
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Rome, Italy.
| | - Nicoletta Tocci
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Rome, Italy
| |
Collapse
|
8
|
Fukushi T. East Asian perspective of responsible research and innovation in neurotechnology. IBRO Neurosci Rep 2024; 16:582-597. [PMID: 38774060 PMCID: PMC11107355 DOI: 10.1016/j.ibneur.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
After more than half a century of research and development (R&D), Brain-computer interface (BCI)-based Neurotechnology continues to progress as one of the leading technologies of the 2020 s worldwide. Various reports and academic literature in Europe and the United States (U.S.) have outlined the trends in the R&D of neurotechnology and the consideration of ethical issues, and the importance of the formulation of ethical principles, guidance and industrial standards as well as the development of relevant human resources has been discussed. However, limited number studies have focused on neurotechnology R&D, the dissemination of neuroethics related to the academic foundation advancing the discussion on ethical principles, guidance and standards or human resource development in the Asian region. This study fills in this gap in understanding of Eastern Asian (China, Korea and Japan) situation based on the participation in activities to develop ethical principles, guidance, and industrial standards for appropriate use of neurotechnology, in addition to literature survey and clinical registries' search investigation reflecting the trends in neurotechnology R&D as well as its social implication in Asian region. The current study compared the results with the situation in Europa and the U.S. and discussed issues that need to be addressed in the future and discussed the significance and potential of corporate consortium initiatives in Japan and examples of ethics and governance activities in Asian Countries.
Collapse
Affiliation(s)
- Tamami Fukushi
- Faculty of Human Welfare, Tokyo Online University, Nishi-Shinjuku Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
9
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Kuzmina E, Kriukov D, Lebedev M. Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling. Sci Rep 2024; 14:3566. [PMID: 38347042 PMCID: PMC10861525 DOI: 10.1038/s41598-024-53907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Spatiotemporal properties of neuronal population activity in cortical motor areas have been subjects of experimental and theoretical investigations, generating numerous interpretations regarding mechanisms for preparing and executing limb movements. Two competing models, representational and dynamical, strive to explain the relationship between movement parameters and neuronal activity. A dynamical model uses the jPCA method that holistically characterizes oscillatory activity in neuron populations by maximizing the data rotational dynamics. Different rotational dynamics interpretations revealed by the jPCA approach have been proposed. Yet, the nature of such dynamics remains poorly understood. We comprehensively analyzed several neuronal-population datasets and found rotational dynamics consistently accounted for by a traveling wave pattern. For quantifying rotation strength, we developed a complex-valued measure, the gyration number. Additionally, we identified parameters influencing rotation extent in the data. Our findings suggest that rotational dynamics and traveling waves are typically the same phenomena, so reevaluation of the previous interpretations where they were considered separate entities is needed.
Collapse
Affiliation(s)
- Ekaterina Kuzmina
- Skolkovo Institute of Science and Technology, Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia, 121205.
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia.
| | - Dmitrii Kriukov
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia, 121205
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119992
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia, 194223
| |
Collapse
|
11
|
Kou ZQ, Chen CY, Abdurahman M, Weng XC, Hu C, Geng HY. The Claustrum Controls Motor Activity Through Anterior Cingulate Cortex Input and Local Circuit Synchronization in a Preparatory Manner. Neurosci Bull 2023; 39:1591-1594. [PMID: 37310577 PMCID: PMC10533431 DOI: 10.1007/s12264-023-01079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Affiliation(s)
- Zi-Qi Kou
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chun-Yan Chen
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Mamatsali Abdurahman
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xu-Chu Weng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Hong-Yan Geng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Zeng Z, Zhang C, Gu Y. Visuo-vestibular heading perception: a model system to study multi-sensory decision making. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220334. [PMID: 37545303 PMCID: PMC10404926 DOI: 10.1098/rstb.2022.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/15/2023] [Indexed: 08/08/2023] Open
Abstract
Integrating noisy signals across time as well as sensory modalities, a process named multi-sensory decision making (MSDM), is an essential strategy for making more accurate and sensitive decisions in complex environments. Although this field is just emerging, recent extraordinary works from different perspectives, including computational theory, psychophysical behaviour and neurophysiology, begin to shed new light onto MSDM. In the current review, we focus on MSDM by using a model system of visuo-vestibular heading. Combining well-controlled behavioural paradigms on virtual-reality systems, single-unit recordings, causal manipulations and computational theory based on spiking activity, recent progress reveals that vestibular signals contain complex temporal dynamics in many brain regions, including unisensory, multi-sensory and sensory-motor association areas. This challenges the brain for cue integration across time and sensory modality such as optic flow which mainly contains a motion velocity signal. In addition, new evidence from the higher-level decision-related areas, mostly in the posterior and frontal/prefrontal regions, helps revise our conventional thought on how signals from different sensory modalities may be processed, converged, and moment-by-moment accumulated through neural circuits for forming a unified, optimal perceptual decision. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Zhao Zeng
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Ce Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Yong Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
13
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Wang Y, Wang Q, Zheng R, Xu X, Yang X, Gui Q, Yang X, Wang Y, Cui H, Pei W. Flexible multichannel electrodes for acute recording in nonhuman primates. MICROSYSTEMS & NANOENGINEERING 2023; 9:93. [PMID: 37484502 PMCID: PMC10359297 DOI: 10.1038/s41378-023-00550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 07/25/2023]
Abstract
Flexible electrodes have demonstrated better biocompatibility than rigid electrodes in relieving tissue encapsulation and long-term recording. Nonhuman primates are closer to humans in their brains' structural and functional properties, thus making them more suitable than rodents as animal models for potential clinical usage. However, the application of flexible electrodes on nonhuman primates has rarely been reported. In the present study, a flexible multichannel electrode array for nonhuman primates was developed and implemented for extracellular recording in behaving monkeys. To minimize the window of durotomy for reducing possible risks, a guide-tube-compatible implantation solution was designed to deliver the flexible electrodes through the dura into the cortex. The proposed structure for inserting flexible electrodes was characterized ex vivo and validated in vivo. Furthermore, acute recording of multichannel flexible electrodes for the primates was performed. The results showed that the flexible electrodes and implantation method used in this study meet the needs of extracellular recording in nonhuman primates. Task-related neuronal activities with a high signal-to-noise ratio of spikes demonstrated that our whole device is currently a minimally invasive and clinically viable approach for extracellular recording.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Qifan Wang
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Ruichen Zheng
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xinxiu Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Xinze Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Qiang Gui
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Xiaowei Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - He Cui
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| |
Collapse
|
15
|
Araujo MO, Tamplain P, Duarte NAC, Comodo ACM, Ferreira GOA, Queiróga A, Oliveira CS, Collange-Grecco LA. Transcranial direct current stimulation to facilitate neurofunctional rehabilitation in children with autism spectrum disorder: a protocol for a randomized, sham-controlled, double-blind clinical trial. Front Neurol 2023; 14:1196585. [PMID: 37396775 PMCID: PMC10310925 DOI: 10.3389/fneur.2023.1196585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Background Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex and cerebellum is gaining prominence in the literature due to its potential to favor learning and motor performance. If administered during motor training, tDCS is capable of increasing the effect of training. Considering the motor impairment presented by children with Autism Spectrum Disorders (ASD), atDCS applied during motor training may contribute to the rehabilitation of these children. However, it is necessary to examine and compare the effects of atDCS over the motor cortex and the cerebellum on the motor skills of children with ASD. This information may benefit future clinical indications of tDCS for rehabilitation of children with ASD. The aim of the proposed study is to determine whether anodal tDCS over the primary motor cortex and cerebellum can enhance the effects of gait training and postural control on motor skills, mobility, functional balance, cortical excitability, cognitive aspects and behavioral aspects in children with ASD. Our hypothesis is the active tDCS combined with motor training will enhance the performance of the participants in comparison to sham tDCS. Methods and design A randomized, sham-controlled, double-blind clinical trial will be conducted involving 30 children with ASD that will be recruited to receive ten sessions of sham or ten sessions of active anodal tDCS (1 mA, 20 min) over the primary motor cortex or cerebellun combined with motor training. The participants will be assessed before as well as one, four and eight weeks after the interventions. The primary outcome will be gross and fine motor skills. The secondary outcomes will be mobility, functional balance, motor cortical excitability, cognitive aspects and behavioral aspects. Discussion Although abnormalities in gait and balance are not primary characteristics of ASD, such abnormalities compromise independence and global functioning during the execution of routine activities of childhood. If demonstrated that anodal tDCS administered over areas of the brain involved in motor control, such as the primary motor cortex and cerebellum, can enhance the effects of gait and balance training in only ten sessions in two consecutive weeks, the clinical applicability of this stimulation modality will be expanded as well as more scientifically founded.Clinical trial registration February 16, 2023 (https://ensaiosclinicos.gov.br/rg/RBR-3bskhwf).
Collapse
Affiliation(s)
- Marcela O. Araujo
- Human Movement and Rehabilitation, Post Graduate Program, Evangelic University of Goias, Anápolis, Brazil
- Children's Rehabilitation Department, Follow Kids Child Neurorehabilitation Clinic, Rio de Janeiro, Brazil
| | - Priscila Tamplain
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, United States
| | - Natália A. C. Duarte
- Human Movement and Rehabilitation, Post Graduate Program, Evangelic University of Goias, Anápolis, Brazil
| | - Andréa C. M. Comodo
- Children's Rehabilitation Department, Follow Kids Child Neurorehabilitation Clinic, Rio de Janeiro, Brazil
| | - Giselle O. A. Ferreira
- Children's Rehabilitation Department, Follow Kids Child Neurorehabilitation Clinic, Rio de Janeiro, Brazil
| | - Amanda Queiróga
- Department of Child Neurofunctional Physiotherapy, Center of Pediatric Neurostimulation, São Paulo, Brazil
| | - Claudia S. Oliveira
- Human Movement and Rehabilitation, Post Graduate Program, Evangelic University of Goias, Anápolis, Brazil
| | - Luanda A. Collange-Grecco
- Human Movement and Rehabilitation, Post Graduate Program, Evangelic University of Goias, Anápolis, Brazil
- Department of Child Neurofunctional Physiotherapy, Center of Pediatric Neurostimulation, São Paulo, Brazil
| |
Collapse
|
16
|
Haggie L, Schmid L, Röhrle O, Besier T, McMorland A, Saini H. Linking cortex and contraction-Integrating models along the corticomuscular pathway. Front Physiol 2023; 14:1095260. [PMID: 37234419 PMCID: PMC10206006 DOI: 10.3389/fphys.2023.1095260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Laura Schmid
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Harnoor Saini
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Kuppuswamy A. On the importance of not comparing apples with pears. Eur J Neurol 2023; 30:557. [PMID: 36208209 DOI: 10.1111/ene.15587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023]
|