1
|
Qi Y, Zhao R, Tian J, Lu J, He M, Tai Y. Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. Neurosci Bull 2024; 40:1774-1788. [PMID: 39080101 PMCID: PMC11607270 DOI: 10.1007/s12264-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 11/30/2024] Open
Abstract
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangteng Lu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Seignette K, Jamann N, Papale P, Terra H, Porneso RO, de Kraker L, van der Togt C, van der Aa M, Neering P, Ruimschotel E, Roelfsema PR, Montijn JS, Self MW, Kole MHP, Levelt CN. Experience shapes chandelier cell function and structure in the visual cortex. eLife 2024; 12:RP91153. [PMID: 38192196 PMCID: PMC10963032 DOI: 10.7554/elife.91153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Detailed characterization of interneuron types in primary visual cortex (V1) has greatly contributed to understanding visual perception, yet the role of chandelier cells (ChCs) in visual processing remains poorly characterized. Using viral tracing we found that V1 ChCs predominantly receive monosynaptic input from local layer 5 pyramidal cells and higher-order cortical regions. Two-photon calcium imaging and convolutional neural network modeling revealed that ChCs are visually responsive but weakly selective for stimulus content. In mice running in a virtual tunnel, ChCs respond strongly to events known to elicit arousal, including locomotion and visuomotor mismatch. Repeated exposure of the mice to the virtual tunnel was accompanied by reduced visual responses of ChCs and structural plasticity of ChC boutons and axon initial segment length. Finally, ChCs only weakly inhibited pyramidal cells. These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of their axon initial segments during behaviorally relevant events.
Collapse
Affiliation(s)
- Koen Seignette
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Nora Jamann
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Huub Terra
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Ralph O Porneso
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Leander de Kraker
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Chris van der Togt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maaike van der Aa
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Paul Neering
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Emma Ruimschotel
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Jorrit S Montijn
- Department of Cortical Structure & Function, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maarten HP Kole
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
3
|
Hu A, Zhao R, Ren B, Li Y, Lu J, Tai Y. Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex. Neurosci Bull 2023; 39:1050-1068. [PMID: 36849716 PMCID: PMC10313623 DOI: 10.1007/s12264-023-01038-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 03/01/2023] Open
Abstract
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Collapse
Affiliation(s)
- Ankang Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- School of Clinical Medicine, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Baihui Ren
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Yilin Tai
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|