1
|
Zhu Q, Yaggi MF, Jork N, Jessen HJ, Diver MM. Transport and InsP 8 gating mechanisms of the human inorganic phosphate exporter XPR1. Nat Commun 2025; 16:2770. [PMID: 40113814 PMCID: PMC11926068 DOI: 10.1038/s41467-025-58076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Inorganic phosphate (Pi) has essential metabolic and structural roles in living organisms. The Pi exporter, XPR1/SLC53A1, is critical for cellular Pi homeostasis. When intercellular Pi is high, cells accumulate inositol pyrophosphate (1,5-InsP8), a signaling molecule required for XPR1 function. Inactivating XPR1 mutations lead to brain calcifications, causing neurological symptoms including movement disorders, psychosis, and dementia. Here, cryo-electron microscopy structures of dimeric XPR1 and functional characterization delineate the substrate translocation pathway and how InsP8 initiates Pi transport. Binding of InsP8 to XPR1, but not the related inositol polyphosphate InsP6, rigidifies the intracellular SPX domains, with InsP8 bridging the dimers and SPX and transmembrane domains. Locked in this state, the C-terminal tail is sequestered, revealing the entrance to the transport pathway, thus explaining the obligate roles of the SPX domain and InsP8. Together, these findings advance our understanding of XPR1 transport activity and expand opportunities for rationalizing disease mechanisms and therapeutic intervention.
Collapse
Affiliation(s)
- Qinyu Zhu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Madeleine F Yaggi
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Nikolaus Jork
- Department of Chemistry and Pharmacy, Institute for Organic Chemistry, and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Institute for Organic Chemistry, and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Melinda M Diver
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
2
|
Lin J, Wang Y, Gao X, Liu X. Novel Compound Heterozygous Mutation on MYORG Gene in a Chinese Patient with Primary Familial Brain Calcification. Neurol India 2025; 73:365-367. [PMID: 40176235 DOI: 10.4103/neurol-india.neurol-india-d-24-00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 04/04/2025]
Affiliation(s)
- Jixiang Lin
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Yanfei Wang
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Xiang Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Xiaomin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
3
|
Chen R, Xie S, Gao J, Zhang S, Zhang X, Yao Y, Zheng G, Wang F, Liu Z, Shen X. Vascular Ossification in the Developing Brain: A Case Study of Pediatric Sturge Weber Syndrome. Neurosci Bull 2025; 41:520-524. [PMID: 39503967 DOI: 10.1007/s12264-024-01311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 03/04/2025] Open
Affiliation(s)
- Ranxi Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
| | - Shuhui Xie
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- Sino-Danish College, University of CAS, Beijing, 100190, China
| | - Jin Gao
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China
- Department of Pathology, XHH, Xiamen, 361003, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, 100101, China
- University of CAS, Beijing, 100049, China
| | - Xiaobin Zhang
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China
- Epilepsy Center, XHH, Xiamen, 361003, China
| | - Yi Yao
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China
- Epilepsy Center, XHH, Xiamen, 361003, China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Fengpeng Wang
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China.
- Epilepsy Center, XHH, Xiamen, 361003, China.
| | - Zili Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China.
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China.
| | - Xuefeng Shen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China.
- HH-SIAT Joint Center for Epilepsy Research, Xiamen Humanity Hospital (XHH), Xiamen, 361003, China.
| |
Collapse
|
4
|
Zhang W, Chen Y, Guan Z, Wang Y, Tang M, Du Z, Zhang J, Cheng M, Zuo J, Liu Y, Wang Q, Liu Y, Zhang D, Yin P, Ma L, Liu Z. Structural insights into the mechanism of phosphate recognition and transport by XPR1. Nat Commun 2025; 16:18. [PMID: 39747008 PMCID: PMC11696373 DOI: 10.1038/s41467-024-55471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
XPR1 is the sole protein known to transport inorganic phosphate (Pi) out of cells, a function conserved across species from yeast to mammals. Human XPR1 variants lead to cerebral calcium-phosphate deposition and primary familial brain calcification (PFBC), a hereditary neurodegenerative disorder. Here, we present the cryo-EM structure of human XPR1 in both its Pi-unbound and various Pi-bound states. XPR1 features 10 transmembrane α-helices forming an ion channel-like structure, with multiple Pi recognition sites along the channel. Pathogenic mutations in two arginine residues, which line the translocation channel, disrupt Pi transport. Molecular dynamics simulations reveal that Pi ion undergoes a stepwise transition through the sequential recognition sites during the transport process. Together with functional analyses, our results suggest that this sequential arrangement allows XPR1 to facilitate Pi ion passage via a "relay" process, and they establish a framework for the interpretation of disease-related mutations and for the development of future therapeutics.
Collapse
Affiliation(s)
- Wenhui Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanke Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhangmeng Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Meng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Zuo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:19-38. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
6
|
Pan L, Gao Q, Wei K, Yu Y, Qin G, Wang T. A robust transfer learning approach for high-dimensional linear regression to support integration of multi-source gene expression data. PLoS Comput Biol 2025; 21:e1012739. [PMID: 39792955 PMCID: PMC11756795 DOI: 10.1371/journal.pcbi.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/23/2025] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches. In this paper, we study the transfer learning problem under high-dimensional linear models with t-distributed error (Trans-PtLR), which aims to improve the estimation and prediction of target data by borrowing information from useful source data and offering robustness to accommodate complex data with heavy tails and outliers. In the oracle case with known transferable source datasets, a transfer learning algorithm based on penalized maximum likelihood and expectation-maximization algorithm is established. To avoid including non-informative sources, we propose to select the transferable sources based on cross-validation. Extensive simulation experiments as well as an application demonstrate that Trans-PtLR demonstrates robustness and better performance of estimation and prediction when heavy-tail and outliers exist compared to transfer learning for linear regression model with normal error distribution. Data integration, Variable selection, T distribution, Expectation maximization algorithm, Genotype-Tissue Expression, Cross validation.
Collapse
Affiliation(s)
- Lulu Pan
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Qian Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Kecheng Wei
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, Fudan University, Shanghai, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| |
Collapse
|
7
|
Zhao M, Cheng X, Chen L, Zeng YH, Lin KJ, Li YL, Zheng ZH, Huang XJ, Zuo DD, Guo XX, Guo J, He D, Liu Y, Lin Y, Wang C, Lv WQ, Su HZ, Yao XP, Ye ZL, Chen XH, Lu YQ, Huang CW, Yang G, Zhang YX, Lin MT, Wang N, Xiong ZQ, Chen WJ. Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model. Neuron 2024; 112:3278-3294.e7. [PMID: 39121859 DOI: 10.1016/j.neuron.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Zeng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Lu Li
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ze-Hong Zheng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Jing Huang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Dan-Dan Zuo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chong Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Qi Lv
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiang-Ping Yao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zi-Ling Ye
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying-Qian Lu
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Wei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Xian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ning Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201602, China.
| | - Wan-Jin Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
8
|
Hobara T, Higuchi Y, Yoshida M, Suehara M, Ando M, Yuan JH, Yoshimura A, Kojima F, Matsuura E, Okamoto Y, Mitsui J, Tsuji S, Takashima H. Genetic and pathophysiological insights from autopsied patient with primary familial brain calcification: novel MYORG variants and astrocytic implications. Acta Neuropathol Commun 2024; 12:136. [PMID: 39180105 PMCID: PMC11342542 DOI: 10.1186/s40478-024-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024] Open
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disorder characterized by symmetric brain calcifications that manifest with variable neurological symptoms. This study aimed to explore the genetic basis of PFBC and elucidate the underlying pathophysiological mechanisms. Six patients from four pedigrees with brain calcification were enrolled. Whole-exome sequencing identified two novel homozygous variants, c.488G > T (p.W163L) and c.2135G > A (p.W712*), within the myogenesis regulating glycosidase (MYORG) gene. Cerebellar ataxia (n = 5) and pyramidal signs (n = 4) were predominant symptoms, with significant clinical heterogeneity noted even within the same family. An autopsy of one patient revealed extensive brainstem calcifications, sparing the cerebral cortex, and marked by calcifications predominantly in capillaries and arterioles. The pathological study suggested morphological alterations characterized by shortened foot processes within astrocytes in regions with pronounced calcification and decreased immunoreactivity of AQP4. The morphology of astrocytes in regions without calcification remains preserved. Neuronal loss and gliosis were observed in the basal ganglia, thalamus, brainstem, cerebellum, and dentate nucleus. Notably, olivary hypertrophy, a previously undescribed feature in MYORG-PFBC, was discovered. Neuroimaging showed reduced blood flow in the cerebellum, highlighting the extent of cerebellar involvement. Among perivascular cells constituting the blood-brain barrier (BBB) and neurovascular unit, MYORG is most highly expressed in astrocytes. Astrocytes are integral components of the BBB, and their dysfunction can precipitate BBB disruption, potentially leading to brain calcification and subsequent neuronal loss. This study presents two novel homozygous variants in the MYORG gene and highlights the pivotal role of astrocytes in the development of brain calcifications, providing insights into the pathophysiological mechanisms underlying PFBC associated with MYORG variants.
Collapse
Affiliation(s)
- Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Masahito Suehara
- Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Chiba, Japan
- Department of Neurology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
9
|
Sun D, Wang Y, Wang J, Wang S, Zhu L, Xia K, Zhang Y, Wang X. Primary familial brain calcification presenting with parkinsonism and motor complications caused by a novel SLC20A2 variant: a case report. Front Neurol 2024; 15:1382534. [PMID: 39036637 PMCID: PMC11257840 DOI: 10.3389/fneur.2024.1382534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a central nervous system calcium deposition disorder with symmetrical basal ganglia calcification. Most PFBC cases are caused by SLC20A2 gene variant. We report a Chinese female patient with PFBC and dopamine-responsive parkinsonism who had motor fluctuations and dyskinesia and recovered effectively after symptomatic medication adjustment. A novel heterozygous missense variant was found by whole-exome sequencing and proven harmful by family validation and genetic analysis. This example expands the phenotype of SLC20A2-associated PFBC patients and shows the clinical efficacy of dopaminergic replacement treatment.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Graduate, Anhui University of Chinese Medicine, Hefei, China
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Yu Wang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Wang
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Shijing Wang
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Zhu
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Kun Xia
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Yunyun Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xun Wang
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Magalhães M, Alves M, Paulino Ferreira L, Alves J, Durães D. Basal Ganglia Calcification: A Case Report of Two Siblings With Fahr's Disease. Cureus 2024; 16:e53434. [PMID: 38314389 PMCID: PMC10838373 DOI: 10.7759/cureus.53434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
Fahr's disease is a rare neurodegenerative disorder caused by bilateral and usually symmetrical intracranial calcifications. In most cases, it exhibits an autosomal dominant pattern of inheritance and genetic heterogeneity. Patients may present with movement disorders, cognitive impairment, and psychiatric disorders. Currently, there are no disease-modifying drugs, so the management is based on the treatment of the symptoms. We present two cases involving male siblings, both with psychiatric symptoms as the initial presentation of the disease. Brain computed tomography revealed bilateral calcifications in the basal ganglia for which no underlying cause was found. In both cases, remission of behavioural changes and psychiatric symptoms was achieved with psychotropic drugs.
Collapse
Affiliation(s)
- Margarida Magalhães
- Department of Psychiatry and Mental Health, Setúbal Hospital Centre, Setúbal, PRT
| | - Margarida Alves
- Department of Psychiatry and Mental Health, Setúbal Hospital Centre, Setúbal, PRT
| | - Luís Paulino Ferreira
- Department of Psychiatry and Mental Health, Setúbal Hospital Centre, Setúbal, PRT
- Department of Neurosciences, Nova Medical School, Lisbon, PRT
| | - Janice Alves
- Department of Neurology, Setúbal Hospital Centre, Setúbal, PRT
| | - Diana Durães
- Department of Psychiatry and Mental Health, Setúbal Hospital Centre, Setúbal, PRT
| |
Collapse
|
11
|
Orlacchio A. Special Issue "Neurogenetics in Neurology". Int J Mol Sci 2024; 25:1061. [PMID: 38256134 PMCID: PMC10815939 DOI: 10.3390/ijms25021061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
With the rapid developments in molecular genetics and genomics, this Special Issue collates works outlining ultra-modern scientific research [...].
Collapse
Affiliation(s)
- Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06132 Perugia, Italy;
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
12
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
13
|
Monfrini E, Arienti F, Rinchetti P, Lotti F, Riboldi GM. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24108995. [PMID: 37240341 DOI: 10.3390/ijms24108995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Federica Arienti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Paola Rinchetti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Francesco Lotti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY 10017, USA
| |
Collapse
|
14
|
Carecchio M, Mainardi M, Bonato G. The clinical and genetic spectrum of primary familial brain calcification. J Neurol 2023; 270:3270-3277. [PMID: 36862146 DOI: 10.1007/s00415-023-11650-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Primary familial brain calcification (PFBC), formerly known as Fahr's disease, is a rare neurodegenerative disease characterized by bilateral progressive calcification of the microvessels of the basal ganglia and other cerebral and cerebellar structures. PFBC is thought to be due to an altered function of the Neurovascular Unit (NVU), where abnormal calcium-phosphorus metabolism, functional and microanatomical alterations of pericytes and mitochondrial alterations cause a dysfunction of the blood-brain barrier (BBB) and the generation of an osteogenic environment with surrounding astrocyte activation and progressive neurodegeneration. Seven causative genes have been discovered so far, of which four with dominant (SLC20A2, PDGFB, PDGFRB, XPR1) and three with recessive inheritance (MYORG, JAM2, CMPK2). Clinical presentation ranges from asymptomatic subjects to movement disorders, cognitive decline and psychiatric disturbances alone or in various combinations. Radiological patterns of calcium deposition are similar in all known genetic forms, but central pontine calcification and cerebellar atrophy are highly suggestive of MYORG mutations and extensive cortical calcification has been associated with JAM2 mutations. Currently, no disease-modifying drugs or calcium-chelating agents are available and only symptomatic treatments can be offered.
Collapse
Affiliation(s)
- Miryam Carecchio
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy.
| | - Michele Mainardi
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy
| | - Giulia Bonato
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy
| |
Collapse
|
15
|
Song T, Zhao Y, Wen G, Du J, Xu Q. A novel MYORG mutation causes primary familial brain calcification with migraine: Case report and literature review. Front Neurol 2023; 14:1110227. [PMID: 36816548 PMCID: PMC9932805 DOI: 10.3389/fneur.2023.1110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a disorder in which pathologic calcification of the basal ganglia, cerebellum, or other brain regions with bilateral symmetry occurs. Common clinical symptoms include dysarthria, cerebellar symptoms, motor deficits, and cognitive impairment. Genetic factors are an important cause of the disease; however autosomal recessive (AR) inheritance is rare. In 2018, the myogenesis-regulated glycosidase (MYORG) gene was the first to be associated with AR-PFBC. The present case is a 24-year-old woman with AR-PFBC that presented with migraine at the age of 16 years. Symmetrical patchy calcifications were seen in the bilateral cerebellopontine nuclei, thalamus, basal ganglia, and radiocoronal area on computed tomography and magnetic resonance imaging. AR-PFBC with migraine as the main clinical symptom is rare. Whole-exome sequencing revealed a compound heterozygous mutation in the MYORG gene, one of which has not been previously reported. Our case highlights the pathogenic profile of the MYORG gene, and demonstrates the need for exclusion of calcium deposits in the brain for migraine patients with AR inheritance.
Collapse
Affiliation(s)
- Tingwei Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Guo Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,*Correspondence: Qian Xu ✉
| |
Collapse
|
16
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|