1
|
Šerý O, Sheardová K, Dziedzinska R, Zeman T, Vyhnálek M, Marková H, Laczó J, Lochman J, Vrzalová K, Balcar VJ, Hort J. ABCB1 Gene Polymorphisms and Their Contribution to Cognitive Decline in Mild Cognitive Impairment: A Next-Generation Sequencing Study. J Gerontol A Biol Sci Med Sci 2025; 80:glaf055. [PMID: 40168071 DOI: 10.1093/gerona/glaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Indexed: 04/02/2025] Open
Abstract
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Sheardová
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- First Neurology Department, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Radka Dziedzinska
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Vyhnálek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Hana Marková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Vrzalová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Zhang L, Wang J, Yan Y, Xiang L, Zhai X, Cai L, Sun Z, Pi M, Xiong Q, Zhou H, Gui Y, Wang X, Shu X, Xia Y. Vimentin Fragmentation and Its Role in Amyloid-Beta Plaque Deposition in Alzheimer's Disease. Int J Mol Sci 2025; 26:2857. [PMID: 40243407 PMCID: PMC11988971 DOI: 10.3390/ijms26072857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Intermediate filament protein vimentin (Vim) is a well-established marker for reactive astrocytes and has been closely associated with Alzheimer's disease (AD). RNA sequencing data reveal elevated expression of Vim in AD brains, with its aggregation frequently observed around amyloid-β (Aβ) plaques. However, the precise mechanisms by which Vim influences the aggregation or propagation of Aβ plaques remain unclear. In this study, we detected the upregulation of astrocytic Vim in AD brain tissue, with its co-localization around Aβ plaques. Asparagine endopeptidase (AEP), another molecule implicated in AD, was found to cleave Vim both in vitro and in vivo, including within human brain tissue. Mass spectrometry analysis confirmed that the AEP cleavage site on Vim is located at N283. We further investigated the in vivo cellular localization of Vim and observed that fragmented Vim, particularly the C-terminal fragment Vim 284-466, promotes apoptosis and disrupts the network structure that is essential for interaction with glial fibrillary acidic protein (GFAP). This disruption impairs astrocytic phagocytosis of exogenous Aβ, which is attributed to the reduced release of apolipoprotein E (ApoE) by astrocytes. The decrease in ApoE levels, in turn, diminishes the transport and clearance of Aβ. Conversely, mutation of the Vim N283 site (N283A) prevents AEP-mediated cleavage of Vim, preserves the GFAP network structure, restores ApoE levels, and reverses the effects on Aβ aggregation. Collectively, our findings elucidate the role of Vim fragmentation in Aβ plaque deposition and propose a potentially novel therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lan Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Ji Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yalong Yan
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Lihong Xiang
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xinyue Zhai
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Lianmei Cai
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zhuoran Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mingshan Pi
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Qi Xiong
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Hongyan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaochuan Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan 430056, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Jiang Q, Liu J, Huang S, Wang XY, Chen X, Liu GH, Ye K, Song W, Masters CL, Wang J, Wang YJ. Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances. Signal Transduct Target Ther 2025; 10:76. [PMID: 40059211 PMCID: PMC11891338 DOI: 10.1038/s41392-025-02145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
In the context of global ageing, the prevalence of neurodegenerative diseases and dementia, such as Alzheimer's disease (AD), is increasing. However, the current symptomatic and disease-modifying therapies have achieved limited benefits for neurodegenerative diseases in clinical settings. Halting the progress of neurodegeneration and cognitive decline or even improving impaired cognition and function are the clinically meaningful goals of treatments for neurodegenerative diseases. Ageing is the primary risk factor for neurodegenerative diseases and their associated comorbidities, such as vascular pathologies, in elderly individuals. Thus, we aim to elucidate the role of ageing in neurodegenerative diseases from the perspective of a complex system, in which the brain is the core and peripheral organs and tissues form a holistic network to support brain functions. During ageing, the progressive deterioration of the structure and function of the entire body hampers its active and adaptive responses to various stimuli, thereby rendering individuals more vulnerable to neurodegenerative diseases. Consequently, we propose that the prevention and treatment of neurodegenerative diseases should be grounded in holistic antiageing and rejuvenation means complemented by interventions targeting disease-specific pathogenic events. This integrated approach is a promising strategy to effectively prevent, pause or slow down the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xuan-Yue Wang
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Xiaowei Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| |
Collapse
|
4
|
Xie G, Jiang G, Huang L, Sun S, Li X, Wu B, Wang H, Zhang Z, Ye K, Yu Y, Xiong J. Asparagine Endopeptidase Inhibition Attenuates Tissue Plasminogen Activator-Induced Brain Hemorrhagic Transformation After Ischemic Stroke. CNS Neurosci Ther 2025; 31:e70345. [PMID: 40116141 PMCID: PMC11926568 DOI: 10.1111/cns.70345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Thrombolytic treatment with tissue plasminogen activator (tPA) is one of the approved pharmacological therapies for acute ischemic stroke. However, the use of tPA is limited due to hemorrhagic transformation (HT) and the narrow therapeutic time window. Previous studies demonstrated that asparagine endopeptidase (AEP), a widely expressed pH-dependent endo-lysosomal cysteine protease, can induce neuronal death during ischemia-reperfusion injury. But whether AEP is engaged in HT during ischemia-reperfusion injury is unclear. In the current study, we expanded the role of AEP on HT after delayed tPA administration. METHODS In order to investigate the effects of AEP on HT after delayed tPA administration following ischemic stroke, the middle cerebral artery occlusion/reperfusion (MCAO/R) was performed in wild-type (WT) and AEP knockout (KO) transgenic mice, followed by delayed administration of tPA (10 mg/kg, 3 h after occlusion). Additionally, we explored the potential of R13, a specific TrkB agonist with a strong inhibitory impact on AEP, to mitigate injury induced by tPA. 24 h after tPA administration, the following parameters were assessed: infarct volume, behavioral tests, hemorrhagic levels, Evans blue leakage, tight and adherens junction protein expression, blood-brain barrier (BBB) function, cerebral vascular structure, matrix metalloproteinases (MMPs), and BBB-regulated protein low-density lipoprotein receptor-related protein 1 (LRP-1) expression. To construct an in vitro model to examine the effects of AEP on ischemia-reperfusion injury after tPA treatment, human umbilical vein endothelial cells (HUVECs) were exposed to 4 h of oxygen-glucose deprivation (OGD), followed by treatment with tPA (500 ng/mL). 7,8-dihydroxyflavone (7,8-DHF), a natural TrkB agonist with an inhibitory effect on AEP, was applied before OGD. RESULTS Compared with tPA-treated WT mice, AEP KO mice treated with tPA showed improved infarct volume, neurological function, brain edema, brain hemoglobin levels, Evans blue leakage, vascular tight junctions, and basement membrane structure combined with reduced AEP expression and activity within the peri-infarct area. In addition, the mice treated with R13 exhibited protective effects on the BBB. Furthermore, we found that the expression of MMP2, MMP9, and LRP-1 in the brain was inhibited by both AEP knockout and R13 treatment. Moreover, HUVECs treated with 7,8-DHF showed improvements in tight and adherens junction proteins and suppressed levels of MMP2, MMP9, and LRP-1. CONCLUSION Our findings demonstrate that AEP exacerbates HT induced by delayed tPA treatment in acute ischemic stroke by activating LRP-1, MMP2, and MMP9, which disrupts BBB integrity. We further confirmed R13 as a preventive therapy to attenuate HT induced by delayed tPA treatment in acute ischemic stroke. The present study suggests AEP inhibition may serve as a promising strategy to enhance the safety of delayed tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Guanfeng Xie
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Gege Jiang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Liqin Huang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaoyi Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Bingjie Wu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Hualong Wang
- Department of NeurologyThe First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei ProvinceShijiazhuangHebeiChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong ProvinceChina
| | - Ying Yu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
7
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Li J, Yang Y, Zhao C, Zhao J, Wang X, Ye S, Wang D, Zhou C, Li J, Wang S, Li K, Liu C, He X, Qin J. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery. J Neuroinflammation 2025; 22:29. [PMID: 39891259 PMCID: PMC11786472 DOI: 10.1186/s12974-025-03362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
CAAT/Enhancer Binding Protein β (C/EBPβ) is associated with inflammatory responses in neurodegenerative pathologies, particularly in the brain. However, the regulatory role of C/EBPβ in spinal cord injury and its impact on neurological recovery remain unknown. In this study, we observed significant upregulation of C/EBPβ in microglia after spinal cord injury in mice and was associated with neuroinflammation. Knocking down C/EBPβ in the spinal cord attenuated microglia pyroptosis, reduced the production of proinflammatory cytokines, and inhibited neuronal apoptosis. Mechanistically, C/EBPβ promoted the transcription of Fcgr1, which was involved in activating microglia pyroptosis. In both in-vivo and in-vitro experiments, knocking down Cebpb or Fcgr1, or the pyroptosis inhibitor VX765 inhibited neuronal apoptosis and improved neurological recovery in mice. These findings indicate that C/EBPβ functions as a key regulator that participates in the microglia pyroptosis-mediated neuroinflammation by activating Fcgr1 transcription.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yubing Yang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenguang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinghao Zhao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohui Wang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shengshou Ye
- Department of Neurology, Qinghai Cardiocerebrovascular Disease Specialised Hospital, Xining, Qinghai, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengdong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Li
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Shuang Wang
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Ke Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chunmiao Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Orthopedics, Xi'an International Rehabilitation Medical Center, Xi'an, Shaanxi, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Qian Z, Li Y, Ye K. Advancements and challenges in mouse models of Alzheimer's disease. Trends Mol Med 2024; 30:1152-1164. [PMID: 39547883 DOI: 10.1016/j.molmed.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) poses a significant health challenge worldwide, and the development of effective treatments necessitates a comprehensive understanding of its pathophysiology. Mouse models have been instrumental in offering insights into the crucial pathogenesis of AD. However, current models rarely recapitulate all aspects of AD pathology in patients; thus, translating the findings from mouse to human clinical trials has proved to be complex. In this review, we outline the development of some prevalently used AD mice, with a particular emphasis on the latest advances in newly generated models. In addition, we discuss the advantages and limitations in mouse models of AD and their applications in blood-based biomarkers. Finally, we speculate on potential future research directions.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, Guangdong, China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
10
|
Peng L, Zhang Z, Li Q, Song Z, Yan C, Ling H. Unveiling the multifaceted pathogenesis and therapeutic drugs of Alzheimer's disease: A comprehensive review. Heliyon 2024; 10:e39217. [PMID: 39629139 PMCID: PMC11612466 DOI: 10.1016/j.heliyon.2024.e39217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) plaques and tau phosphorylation-induced neurofibrillary tangles. This review comprehensively summarizes AD pathogenesis and related factors, drawing on a wealth of authoritative reports and research findings. Specifically, we delve into the intricate mechanisms underlying AD pathology, including Aβ deposition, tau protein phosphorylation, cholinergic dysfunction, neuroinflammation, mitochondrial oxidative stress, ferroptosis, imbalance in the gut microbiota, and microRNA dysregulation. We also explored the effects of these factors on the brain, including synaptic damage and cognitive impairment. Moreover, our review highlights the associations between the pathogenesis of AD and inflammatory cytokines in the peripheral blood and cerebrospinal fluid, dysbiosis of the gut microbiota, and changes in microRNA expression. Overall, we provided a systematic and illustrative overview of the pathogenesis and therapeutic drugs for AD, offering help in the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Liting Peng
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| |
Collapse
|
11
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
12
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
13
|
Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, Ying J, Liang W, Hua F. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14721. [PMID: 38644578 PMCID: PMC11033503 DOI: 10.1111/cns.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aβ (β-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPβ in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS Several studies have demonstrated an elevation in the expression level of C/EBPβ among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPβ expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPβ can be a new therapeutic target for AD. METHODS A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS Overexpression of C/EBPβ exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION The correlation between overexpression of C/EBPβ and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPβ regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPβ overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION The overexpression of C/EBPβ accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPβ plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPβ could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.
Collapse
Affiliation(s)
- Qing Yao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Chubing Long
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Pengcheng Yi
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Guangyong Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Wei Wan
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Jun Ying
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| |
Collapse
|
14
|
Kim GH, Kim J, Choi WS, Kim YK, Lee KH, Jang JW, Kim JG, Ryu HJ, Yang SJ, Jang H, Jung NY, Kim KW, Jeong Y, Moon SY, on behalf of Academic Committee of the Korean Dementia Association. Executive Summary of 2023 International Conference of the Korean Dementia Association (IC-KDA 2023): A Report From the Academic Committee of the Korean Dementia Association. Dement Neurocogn Disord 2024; 23:75-88. [PMID: 38720824 PMCID: PMC11073927 DOI: 10.12779/dnd.2024.23.2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The Korean Dementia Association (KDA) has been organizing biennial international academic conferences since 2019, with the International Conference of the KDA (IC-KDA) 2023 held in Busan under the theme 'Beyond Boundaries: Advancing Global Dementia Solutions.' The conference comprised 6 scientific sessions, 3 plenary lectures, and 4 luncheon symposiums, drawing 804 participants from 35 countries. Notably, a Korea-Taiwan Joint Symposium addressed insights into Alzheimer's disease (AD). Plenary lectures by renowned scholars explored topics such as microbiome-related AD pathogenesis, social cognition in neurodegenerative diseases, and genetic frontotemporal dementia (FTD). On the first day, specific presentations covered subjects like the gut-brain axis and neuroinflammation in dementia, blood-based biomarkers in AD, and updates in AD therapeutics. The second day's presentations addressed recent issues in clinical neuropsychology, FTD cohort studies, and the pathogenesis of non-AD dementia. The Academic Committee of the KDA compiles lecture summaries to provide comprehensive understanding of the advanced dementia knowledge presented at IC-KDA 2023.
Collapse
Affiliation(s)
- Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University, College of Medicine, Seoul, Korea
| | - Jaeho Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hui Jin Ryu
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Soh-Jeong Yang
- Department of Neurology, Severance Hospital of Yonsei University Health System, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Ko Woon Kim
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | | |
Collapse
|
15
|
Butler T, Tey SR, Galvin JE, Perry G, Bowen RL, Atwood CS. Endocrine Dyscrasia in the Etiology and Therapy of Alzheimer's Disease. J Alzheimers Dis 2024; 101:705-713. [PMID: 39240636 DOI: 10.3233/jad-240334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The increase in the incidence of dementia over the last century correlates strongly with the increases in post-reproductive lifespan during this time. As post-reproductive lifespan continues to increase it is likely that the incidence of dementia will also increase unless therapies are developed to prevent, slow or cure dementia. A growing body of evidence implicates age-related endocrine dyscrasia and the length of time that the brain is subjected to this endocrine dyscrasia, as a key causal event leading to the cognitive decline associated with aging and Alzheimer's disease (AD), the major form of dementia in our society. In particular, the elevations in circulating gonadotropins, resulting from the loss of gonadal sex hormone production with menopause and andropause, appear central to the development of AD neuropathology and cognitive decline. This is supported by numerous cell biology, preclinical animal, and epidemiological studies, as well as human clinical studies where suppression of circulating luteinizing hormone and/or follicle-stimulating hormone with either gonadotropin-releasing hormone analogues, or via physiological hormone replacement therapy, has been demonstrated to halt or significantly slow cognitive decline in those with AD. This review provides an overview of past and present studies demonstrating the importance of hypothalamic-pituitary-gonadal hormone balance for normal cognitive functioning, and how targeting age-related endocrine dyscrasia with hormone rebalancing strategies provides an alternative treatment route for those with AD.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sin-Ruow Tey
- JangoBio, LLC, Division of Cell Biology, Fitchburg, WI, USA
| | - James E Galvin
- Departments of Neurology and Psychiatry, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Boca Raton, FL, USA
| | - George Perry
- Department of Neuroscience, Development and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Craig S Atwood
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin, Madison, WI, USA
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|