1
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2025; 67:2161-2184. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zhang R, Xie K, Lian Y, Hong S, Zhu Y. Dexmedetomidine ameliorates x-ray-induced myocardial injury via alleviating cardiomyocyte apoptosis and autophagy. BMC Cardiovasc Disord 2024; 24:323. [PMID: 38918713 PMCID: PMC11201331 DOI: 10.1186/s12872-024-03988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Autophagy/radiation effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/radiation effects
- Myocytes, Cardiac/metabolism
- Apoptosis/drug effects
- Male
- Dexmedetomidine/pharmacology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/drug therapy
- Radiation-Protective Agents/pharmacology
- Disease Models, Animal
- Signal Transduction/drug effects
- Mice
- Autophagy-Related Proteins/metabolism
- Mice, Inbred C57BL
- Apoptosis Regulatory Proteins/metabolism
Collapse
Affiliation(s)
- Runze Zhang
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Kangjie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yanhong Lian
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Shufang Hong
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
3
|
Tsoupras A, Gkika DA, Siadimas I, Christodoulopoulos I, Efthymiopoulos P, Kyzas GZ. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:627. [PMID: 38794197 PMCID: PMC11124379 DOI: 10.3390/ph17050627] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed. The efficacy and safety of NSAIDs as adjunctive therapies for conditions involving inflammation and platelet activation are also discussed. Emphasis is given to the antiplatelet potential of commonly administered NSAIDs medications, such as ibuprofen, diclofenac, naproxen and ketoprofen, alongside non-opioid analgesic and antipyretic medications like paracetamol. This article delves into their mechanisms of action against different pathways of platelet activation, aggregation and overall platelet functions, highlighting additional health-promoting properties of these anti-inflammatory and analgesic agents, without neglecting the induced by these drugs' side-effects on platelets' functionality and thrombocytopenia. Environmental issues emerging from the ever-increased subscription of these drugs are also discussed, along with the need for novel water treatment methodologies for their appropriate elimination from water and wastewater samples. Despite being efficiently eliminated during wastewater treatment processes on occasion, NSAIDs remain prevalent and are found at significant concentrations in water bodies that receive effluents from wastewater treatment plants (WWTPs), since there is no one-size-fits-all solution for removing all contaminants from wastewater, depending on the specific characteristics of the wastewater. Several novel methods have been studied, with adsorption being proposed as a cost-effective and environmentally friendly method for wastewater purification from such drugs. This article also presents limitations and future prospects regarding the observed antiplatelet effects of NSAIDs, as well as the potential of novel derivatives of these compounds, with benefits in other important platelet functions.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, GR 65404 Kavala, Greece; (D.A.G.); (P.E.); (G.Z.K.)
| | | | | | | | | | | |
Collapse
|
4
|
Wang X, Starodubtseva MN, Kapron CM, Liu J. Cadmium, von Willebrand factor and vascular aging. NPJ AGING 2023; 9:11. [PMID: 37264012 DOI: 10.1038/s41514-023-00107-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Vascular aging is a major contributing factor to cardiovascular disease. The aged blood vessels, characterized by vascular wall thickening and stiffening, are instigated by endothelial cell dysfunction induced by oxidative stress and inflammation. von Willebrand Factor (vWF) is a glycoprotein known for its role in coagulation, and plasma levels of vWF are increased with age. Elevated vWF promotes thrombosis, atherosclerotic plaque formation, inflammation and proliferation of vascular smooth muscle cells. Cadmium (Cd) is an environmental pollutant associated with increased morbidity and mortality of cardiovascular disease. At low concentrations, Cd activates pro-survival signaling in endothelial cells, however enhances intima-media thickness and atherogenesis. A non-cytotoxic dose of Cd also increases endothelial vWF expression and secretion in vivo and in vitro. In this review, we summarize the molecular mechanisms underlying vWF-promoted vascular aging-associated pathologies and Cd-induced vWF expression. In addition, we propose that exposure to low-dose Cd is a risk factor for vascular aging, through elevation of plasma vWF.
Collapse
Affiliation(s)
- Xia Wang
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Maria N Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Ju Liu
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
5
|
Stalder G, Chatte A, De Rossi N, Yerly P, Alberio L, Eeckhout E. Caplacizumab for treating subacute intra-stent thrombus occurring despite efficacious double anti-platelet treatment and anticoagulation: a case report. Eur Heart J Case Rep 2023; 7:ytac497. [PMID: 36793934 PMCID: PMC9924497 DOI: 10.1093/ehjcr/ytac497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
Background Acute and subacute stent thromboses are a rare complication associated with high mortality and morbidity occurring in ∼1.5% of patients treated with primary percutaneous intervention for ST-elevation myocardial infarction (STEMI). Recent publications describe a potential role of the von Willebrand factor (VWF) in thrombus formation at sites of critical coronary stenosis in STEMI. Case summary We describe a 58-year-old woman with STEMI at initial presentation, who suffered subacute stent thrombosis despite good stent expansion, efficacious dual antiplatelet therapy, and therapeutic anticoagulation. Because of very high VWF values, we administered N-acetylcysteine in order to depolymerize VWF, but the drug was not well tolerated. Since the patient was still symptomatic, we used caplacizumab in order to prevent VWF from interacting with platelets. Under this treatment, the clinical and angiographic course was favourable. Discussion Considering a modern view of intracoronary thrombus pathophysiology, we describe an innovative treatment approach, which eventually ended in a favourable outcome.
Collapse
Affiliation(s)
- Gregoire Stalder
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
- Service of Hematology and Laboratory of Hematology, Institut Central des Hôpitaux, Hôpital du Valais, Av. du Grand-Champsec 86, CH-1951 Sion, Switzerland
| | - Antoine Chatte
- Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Noemy De Rossi
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Patrick Yerly
- Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Lorenzo Alberio
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Eric Eeckhout
- Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Kovacevic KD, Jilma B, Zhu S, Gilbert JC, Winter MP, Toma A, Hengstenberg C, Lang I, Kubica J, Siller-Matula JM. von Willebrand Factor Predicts Mortality in ACS Patients Treated with Potent P2Y12 Antagonists and is Inhibited by Aptamer BT200 Ex Vivo. Thromb Haemost 2020; 120:1282-1290. [PMID: 32679592 DOI: 10.1055/s-0040-1713888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) is crucial for arterial thrombosis and its plasma levels are increased in acute coronary syndromes (ACSs). The effects of conventional platelet inhibitors are compromised by elevated VWF under high shear rates. BT200 is a third-generation aptamer that binds and inhibits the A1 domain of human VWF. This article aims to study whether VWF is a predictor of mortality in ACS patients under potent P2Y12 blocker therapy and to examine the effects of a VWF inhibiting aptamer BT200 and its concentrations required to inhibit VWF in plasma samples of patients with ACS. METHODS VWF activity was measured in 320 patients with ACS, and concentration effect curves of BT200 were established in plasma pools containing different VWF concentrations. RESULTS Median VWF activity in patients was 170% (interquartile range % confidence interval [CI]: 85-255) and 44% of patients had elevated (> 180%) VWF activity. Plasma levels of VWF activity predicted 1-year (hazard ratio [HR]: 2.68; 95% CI: 1.14-6.31; p < 0.024) and long-term (HR: 2.59; 95% CI: 1.10-6.09) mortality despite treatment with potent platelet inhibitors (dual-antiplatelet therapy with aspirin and prasugrel or ticagrelor). Although half-maximal concentrations were 0.1 to 0.2 µg/mL irrespective of baseline VWF levels, increasing concentrations (0.42-2.13 µg/mL) of BT200 were needed to lower VWF activity to < 20% of normal in plasma pools containing increasing VWF activity (p < 0.001). CONCLUSION VWF is a predictor of all-cause mortality in ACS patients under contemporary potent P2Y12 inhibitor therapy. BT200 effectively inhibited VWF activity in a target concentration-dependent manner.
Collapse
Affiliation(s)
- Katarina D Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shuhao Zhu
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - James C Gilbert
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - Max-Paul Winter
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Aurel Toma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Toruń, Poland
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Hanlon A, Metjian A. Caplacizumab in adult patients with acquired thrombotic thrombocytopenic purpura. Ther Adv Hematol 2020; 11:2040620720902904. [PMID: 32095224 PMCID: PMC7011322 DOI: 10.1177/2040620720902904] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is usually a fatal disease caused by a
deficiency of the metalloproteinase, ADAMTS13, often due to autoimmunity. This
leads to the development of pathogenic multimers of von Willebrand factor (vWF),
causing an inappropriate interaction of platelets and vWF. This results in a
thrombotic microangiopathy, which is treated with therapeutic plasma exchange
and immune suppression. Although this treatment has reduced the mortality of TTP
to only about 20%, there have been no recent significant advances in the
treatment of TTP. Recently, a novel agent has been approved for use in TTP.
Caplacizumab, which binds to the A1 domain of vWF, prevents the adhesion of
platelets to vWF. It is a first in-class ‘nanobody’, that in clinical trials has
shown marked efficacy in treating TTP and its complications. This review will
discuss the development and implications of caplacizumab in the treatment of
TTP.
Collapse
Affiliation(s)
| | - Ara Metjian
- Duke University, Box #3422, 100 Trent Drive, Durham, NC 27708-0187, USA
| |
Collapse
|
8
|
Olie RH, van der Meijden PEJ, Spronk HMH, Ten Cate H. Antithrombotic Therapy: Prevention and Treatment of Atherosclerosis and Atherothrombosis. Handb Exp Pharmacol 2020; 270:103-130. [PMID: 32776281 DOI: 10.1007/164_2020_357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a multifactorial vascular disease that develops in the course of a lifetime. Numerous risk factors for atherosclerosis have been identified, mostly inflicting pro-inflammatory effects. Vessel injury, such as occurring during erosion or rupture of atherosclerotic lesions triggers blood coagulation, in attempt to maintain hemostasis (protect against bleeding). However, thrombo-inflammatory mechanisms may drive blood coagulation such that thrombosis develops, the key process underlying myocardial infarction and ischemic stroke (not due to embolization from the heart). In the blood coagulation system, platelets and coagulation proteins are both essential elements. Hyperreactivity of blood coagulation aggravates atherosclerosis in preclinical models. Pharmacologic inhibition of blood coagulation, either with platelet inhibitors, or better documented with anticoagulants, or both, limits the risk of thrombosis and may potentially reverse atherosclerosis burden, although the latter evidence is still based on animal experimentation.Patients at risk of atherothrombotic complications should receive a single antiplatelet agent (acetylsalicylic acid, ASA, or clopidogrel); those who survived an atherothrombotic event will be prescribed temporary dual antiplatelet therapy (ASA plus a P2Y12 inhibitor) in case of myocardial infarction (6-12 months), or stroke (<6 weeks), followed by a single antiplatelet agent indefinitely. High risk for thrombosis patients (such as those with peripheral artery disease) benefit from a combination of an anticoagulant and ASA. The price of gained efficacy is always increased risk of (major) bleeding; while tailoring therapy to individual needs may limit the risks to some extent, new generations of agents that target less critical elements of hemostasis and coagulation mechanisms are needed to maintain efficacy while reducing bleeding risks.
Collapse
Affiliation(s)
- R H Olie
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands.,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P E J van der Meijden
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands. .,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y. Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol Ther 2019; 203:107393. [PMID: 31356909 DOI: 10.1016/j.pharmthera.2019.107393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Antiplatelet drugs serve as a first-line antithrombotic therapy for the management of acute ischemic events and the prevention of secondary complications in vascular diseases. Numerous antiplatelet therapies have been developed; however, currently available agents are still associated with inadequate efficacy, risk of bleeding, and variability in individual response. Understanding the mechanisms of platelet involvement in thrombosis and the clinical development process of antiplatelet agents is critical for the discovery of novel agents. The functions of platelets in thrombosis are regulated by two major mechanisms: the interaction between surface receptors and their ligands, and the downstream intracellular signaling pathways. Recently, most of the progress made in antiplatelet drug development has been achieved with P2Y receptor antagonists. Additionally, the usage of GP IIb/IIIa receptor antagonists has decreased, because it is associated with a higher risk of bleeding and thrombocytopenia. Agents targeting other platelet surface receptors such as PARs, TP receptor, EP3 receptor, GPIb-IX-V receptor, P-selectin, as well as intracellular signaling factors, such as PI3Kβ, have been evaluated in an attempt to develop the next generation of antiplatelet drugs, reduce or eliminate interpatient variability of drug efficacy and significantly lower the risk of drug-induced bleeding. The aim of this review is to describe the pathways of platelet activation in thrombosis, and summarize the development process of antiplatelet agents, as well as the preclinical and clinical evaluations performed on these agents.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Weikang Tao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Qi Pei
- Shanghai Hengrui Pharmaceuticals Co., 279 Wenjing Road, Shanghai, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
10
|
Majithia A, Bhatt DL. Novel Antiplatelet Therapies for Atherothrombotic Diseases. Arterioscler Thromb Vasc Biol 2019; 39:546-557. [PMID: 30760019 PMCID: PMC6445601 DOI: 10.1161/atvbaha.118.310955] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
Antiplatelet therapies are an essential tool to reduce the risk of developing clinically apparent atherothrombotic disease and are a mainstay in the therapy of patients who have established cardiovascular, cerebrovascular, and peripheral artery disease. Strategies to intensify antiplatelet regimens are limited by concomitant increases in clinically significant bleeding. The development of novel antiplatelet therapies targeting additional receptor and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, holds tremendous potential to improve outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Arjun Majithia
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| | - Deepak L. Bhatt
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Yandrapalli S, Andries G, Gupta S, Dajani AR, Aronow WS. Investigational drugs for the treatment of acute myocardial infarction: focus on antiplatelet and anticoagulant agents. Expert Opin Investig Drugs 2019; 28:223-234. [PMID: 30580647 DOI: 10.1080/13543784.2019.1559814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Advances in our understanding of the complex pathophysiologic mechanisms responsible for high-risk atherosclerotic plaque rupture resulting in acute myocardial infarction (AMI) have led to the development of numerous antiplatelet and anticoagulant agents for treatment of AMI. AREAS COVERED We review various antithrombotic drugs which were recently investigated for the treatment of AMI. A MEDLINE search for relevant articles on newer antiplatelet agents and anticoagulants drugs for the treatment of AMI was performed, and important original investigations were reviewed. We also briefly discuss agents that completed evaluation and were recently recommended by expert guidelines. EXPERT OPINION The antiplatelet agents cangrelor and vorapaxar and the anticoagulant rivaroxaban, have shown promise for the reduction of ischemic events when administered during, and in the acute phase following AMI. However, these agents have not been compared with more potent P2Y12 inhibitors, prasugrel, and ticagrelor. Finding an optimum combination of these agents to achieve an appropriate risk (bleeding) - benefit (reduction in ischemic events) balance is challenging. Further evaluation of agents that show promise is important for enhancing our armamentarium of pharmacologic agents for the successful treatment of AMI.
Collapse
Affiliation(s)
- Srikanth Yandrapalli
- a Division of Cardiology, Department of Medicine , Westchester Medical Center and New York Medical College , Valhalla , NY , USA
| | - Gabriela Andries
- b Department of Medicine , Westchester Medical Center and New York Medical College , Valhalla , NY , USA
| | - Shashvat Gupta
- b Department of Medicine , Westchester Medical Center and New York Medical College , Valhalla , NY , USA
| | - Abdel Rahman Dajani
- c Department of Medicine , Norwalk Hospital affiliated to Yale University , Norwalk , CT , USA
| | - Wilbert S Aronow
- a Division of Cardiology, Department of Medicine , Westchester Medical Center and New York Medical College , Valhalla , NY , USA
| |
Collapse
|
12
|
Abstract
Platelets play a key role in the pathophysiology of coronary artery disease and acute coronary syndromes. Our understanding of platelet function in thrombus formation has increased considerably, resulting in the development of clinically effective treatment strategies and identification of new targets. An underappreciated platelet function is their contribution toward acute and chronic inflammatory processes including atherogenesis. In this review, we discuss the role of platelets in atherosclerosis and thrombosis, platelet function testing, and the pharmacology of currently available antiplatelet drugs.
Collapse
|
13
|
Agostini S, Lionetti V. New insights into the non-hemostatic role of von Willebrand factor in endothelial protection. Can J Physiol Pharmacol 2017; 95:1183-1189. [PMID: 28715643 DOI: 10.1139/cjpp-2017-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During exposure to ischemia-reperfusion (I/R) insult, angiotensin II (AngII)-induced endothelin-1 (ET-1) upregulation in endothelial cells progressively impairs nitric oxide (NO) bioavailability while increasing levels of superoxide anion (O2-) and leading to the onset of endothelial dysfunction. Moreover, the overexpression of ET-1 increases the endothelial and circulating levels of von Willebrand factor (vWF), a glycoprotein with a crucial role in arterial thrombus formation. Nowadays, the non-hemostatic role of endothelial vWF is emerging, although we do not yet know whether its increased expression is cause or consequence of endothelial dysfunction. Notably, the vWF blockade or depletion leads to endothelial protection in cultured cells, animal models of vascular injury, and patients as well. Despite the recent efforts to develop an effective pharmacological strategy, the onset of endothelial dysfunction is still difficult to prevent and remains closely related to adverse clinical outcome. Unraveling the non-hemostatic role of endothelial vWF in the onset of endothelial dysfunction could provide new avenues for protection against vascular injury mediated by AngII.
Collapse
Affiliation(s)
- Silvia Agostini
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,b UOS Anesthesiology, Fondazione Toscana "G. Monasterio", Pisa, Italy
| |
Collapse
|
14
|
Berezovskaya G, Smirnova O, Malev E, Khromov-Borisov N, Klokova E, Karpenko M, Papayan L, Petrishchev N. Thrombin generation test for evaluation of antiplatelet treatment in patients with coronary artery disease after percutaneous coronary intervention. Platelets 2017; 29:185-191. [PMID: 28374620 DOI: 10.1080/09537104.2017.1294680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility of using thrombin generation tests in platelet-rich and platelet-poor plasma for evaluation of dual antiplatelet therapy efficacy in patients with coronary artery disease (CAD), following percutaneous coronary intervention. Venous blood was analyzed from CAD patients aged 53-75 years who had undergone percutaneous coronary intervention with stenting within one year and had been receiving standard doses of clopidogrel and aspirin (75 and 75-100 mg per day, respectively). The control group comprised age- and sex-matched subjects without clinical signs of CAD who were not receiving these drugs. Thrombin generation tests were performed in platelet-rich and platelet-poor plasma. Intravascular platelet activation, induced platelet aggregation, and routine coagulation were evaluated. Antiplatelet treatment did not influence results of routine coagulation tests or intravascular platelet activation. The dual antiplatelet therapy affects collagen-induced platelet aggregation (44 ± 2.5 vs. 7.9 ± 2.6%, р = 10-7) and leads to decreases in endogenous thrombin potential (1900 ± 85 vs. 1740 ± 95 nM∙min, p = 0.0045), maximum thrombin concentration (134 ± 9.5 vs. 106 ± 6.5 nM, p = 4∙10-6), and increases in time to peak thrombin (27 ± 1.5 vs. 31 ± 2 min, p = 0.0012). Decreases in thrombin generation rate showed the highest statistical significance (13 ± 2 vs. 7.9 ± 0.8 nM/min, p = 10-8). Antiplatelet treatment did not alter thrombogram parameters for platelet-poor plasma.
Collapse
Affiliation(s)
- Gelena Berezovskaya
- a Department of Faculty Therapy , Pavlov First Saint-Petersburg State Medical University , Saint-Petersburg , Russia.,b Department of Acute Coronary Syndrome , Federal Almazov North-West Medical Research Centre , Saint-Petersburg , Russia
| | - Olga Smirnova
- c Department of Blood Coagulation , Russian Research Institute of Hematology and Transfusiology , Saint-Petersburg , Russia
| | - Eduard Malev
- d Department of Connective Tissue Disorders , Federal Almazov North-West Medical Research Centre , Saint-Petersburg , Russia
| | - Nikita Khromov-Borisov
- e Department of Physics, Mathematics and Computer Science , Pavlov First Saint-Petersburg State Medical University , Saint-Petersburg , Russia
| | - Elena Klokova
- f Department of Ultrasound Diagnostics , Federal Almazov North-West Medical Research Centre , Saint-Petersburg , Russia
| | - Mikhail Karpenko
- g Department of Clinical Angiology , Federal Almazov North-West Medical Research Centre , Saint-Petersburg , Russia
| | - Lyudmila Papayan
- c Department of Blood Coagulation , Russian Research Institute of Hematology and Transfusiology , Saint-Petersburg , Russia
| | - Nikolay Petrishchev
- h Department of Pathological Physiology , Pavlov First Saint-Petersburg State Medical University , Saint-Petersburg , Russia
| |
Collapse
|
15
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
16
|
Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells. Sci Rep 2016; 6:30048. [PMID: 27443965 PMCID: PMC4957110 DOI: 10.1038/srep30048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) blockade improves endothelial function in coronary patients, we hypothesized that targeting endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and superoxide anion (O2-) levels, known triggers of ET-1 expression. Moreover, no increase in O2- or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through attenuation of NOX-mediated O2- production. Our findings reveal a new role of vWF in preventing of Ang II-induced endothelial dysfunction.
Collapse
|
17
|
van Driel PBAA, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, de Bruijn HS, van Diest PJ, Vahrmeijer AL, van Bergen En Henegouwen PMP, van de Velde CJH, Löwik CWGM, Robinson DJ, Oliveira S. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 2016; 229:93-105. [PMID: 26988602 PMCID: PMC7116242 DOI: 10.1016/j.jconrel.2016.03.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT.
Collapse
Affiliation(s)
- Pieter B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maxime D Slooter
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Raimond Heukers
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke A Stammes
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros BV, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Thomas J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Sabrina Oliveira
- Molecular Oncology, Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
18
|
Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013. J Cardiovasc Transl Res 2015; 7:518-25. [PMID: 24659088 DOI: 10.1007/s12265-014-9555-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, preclinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multimodality imaging, and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context.
Collapse
|
19
|
Li L, Jia Z, Xu L, Wu Y, Zheng Q. Expression profile of neuro-endocrine-immune network in rats with vascular endothelial dysfunction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:177-82. [PMID: 24757381 PMCID: PMC3994306 DOI: 10.4196/kjpp.2014.18.2.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/15/2022]
Abstract
This study was to determine the correlation between endothelial function and neuro-endocrine-immune (NEI) network through observing the changes of NEI network under the different endothelial dysfunction models. Three endothelial dysfunction models were established in male Wistar rats after exposure to homocysteine (Hcy), high fat diet (HFD) and Hcy+HFD. The results showed that there was endothelial dysfunction in all three models with varying degrees. However, the expression of NEI network was totally different. Interestingly, treatment with simvastatin was able to improve vascular endothelial function and restored the imbalance of the NEI network, observed in the Hcy+HFD group. The results indicated that NEI network may have a strong association with endothelial function, and this relationship can be used to distinguish different risk factors and evaluate drug effects.
Collapse
Affiliation(s)
- Lujin Li
- The Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, China
| | - Zhenghua Jia
- The Integration of Traditional and Western Medical Research Academy of Hebei Province, Shijiazhuang, China
| | - Ling Xu
- The Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yiling Wu
- The Integration of Traditional and Western Medical Research Academy of Hebei Province, Shijiazhuang, China
| | - Qingshan Zheng
- The Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Monocyte–Platelets Aggregates as Cellular Biomarker of Endothelium-Dependent Coronary Vasomotor Dysfunction in Patients with Coronary Artery Disease. J Cardiovasc Transl Res 2013; 7:1-8. [DOI: 10.1007/s12265-013-9520-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023]
|
21
|
Barbato E, Herman A, Benit E, Janssens L, Lalmand J, Hoffer E, Chenu P, Guédès A, Missault L, Pirenne B, Cardinal F, Vercauteren S, Wijns W. Double-Blind Parallel Placebo-Controlled Study to Evaluate the Effect of Molsidomine on the Endothelial Dysfunction in Patients with Stable Angina Pectoris Undergoing Percutaneous Coronary Intervention: the MEDCOR Trial. J Cardiovasc Transl Res 2013; 7:226-31. [DOI: 10.1007/s12265-013-9513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
22
|
Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 2013; 6:355-63. [PMID: 23307200 DOI: 10.1007/s12265-012-9435-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
This manuscript reviews the studies performed with ALX-0081 (INN: caplacizumab), a Nanobody targeting von Willebrand factor, in the context of current antithrombotic therapy in coronary artery disease. ALX-0081 specifically inhibits platelet adhesion to the vessel wall, and may control platelet aggregation and subsequent clot formation without increasing bleeding risk. A substantial number of antithrombotics are aimed at this cascade; however, their generally indiscriminative mode of action can result in a narrow therapeutic window, defined by the risk for bleeding complications, and thrombotic events. Nonclinically, ALX-0081 compared favorably to several antithrombotics. In Phase I studies in healthy subjects and stable angina patients undergoing percutaneous coronary intervention (PCI), ALX-0081 was well tolerated, and effectively inhibited pharmacodynamic markers. Following these results, a phase II study was initiated in high-risk acute coronary syndrome patients undergoing PCI. Based on its mechanism of action, ALX-0081 is also being developed for acquired thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Jozef Bartunek
- Cardiovascular Center Aalst, OLV Clinic, Moorselbaan 164, 9300 Aalst, Belgium
| | | | | | | | | | | |
Collapse
|