1
|
Gbelcová H, Rimpelová S, Jariabková A, Macášek P, Priščáková P, Ruml T, Šáchová J, Kubovčiak J, Kolář M, Vítek L. Highly variable biological effects of statins on cancer, non-cancer, and stem cells in vitro. Sci Rep 2024; 14:11830. [PMID: 38782983 PMCID: PMC11116523 DOI: 10.1038/s41598-024-62615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Statins, the drugs used for the treatment of hypercholesterolemia, have come into the spotlight not only as chemoadjuvants, but also as potential stem cell modulators in the context of regenerative therapy. In our study, we compared the in vitro effects of all clinically used statins on the viability of human pancreatic cancer (MiaPaCa-2) cells, non-cancerous human embryonic kidney (HEK 293) cells and adipose-derived mesenchymal stem cells (ADMSC). Additionally, the effect of statins on viability of MiaPaCa-2 and ADMSC cells spheroids was tested. Furthermore, we performed a microarray analysis on ADMSCs treated with individual statins (12 μM) and compared the importance of the effects of statins on gene expression between stem cells and pancreatic cancer cells. Concentrations of statins that significantly affected cancer cells viability (< 40 μM) did not affect stem cells viability after 24 h. Moreover, statins that didn´t affect viability of cancer cells grown in a monolayer, induce the disintegration of cancer cell spheroids. The effect of statins on gene expression was significantly less pronounced in stem cells compared to pancreatic cancer cells. In conclusion, the low efficacy of statins on non-tumor and stem cells at concentrations sufficient for cancer cells growth inhibition, support their applicability in chemoadjuvant tumor therapy.
Collapse
Affiliation(s)
- Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovak Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Adriana Jariabková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovak Republic
| | - Patrik Macášek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovak Republic
| | - Petra Priščáková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovak Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4Th Department of Internal Medicine, 1St Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 121 08, Czech Republic
| |
Collapse
|
2
|
Adamičková A, Chomaničová N, Gažová A, Maďarič J, Červenák Z, Valášková S, Adamička M, Kyselovic J. Effect of Atorvastatin on Angiogenesis-Related Genes VEGF-A, HGF and IGF-1 and the Modulation of PI3K/AKT/mTOR Transcripts in Bone-Marrow-Derived Mesenchymal Stem Cells. Curr Issues Mol Biol 2023; 45:2326-2337. [PMID: 36975520 PMCID: PMC10046955 DOI: 10.3390/cimb45030150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Stem cell transplantation represents a unique therapeutic tool in tissue engineering and regenerative medicine. However, it was shown that the post-injection survival of stem cells is poor, warranting a more comprehensive understanding of activated regenerative pathways. Numerous studies indicate that statins improve the therapeutic efficacy of stem cells in regenerative medicine. In the present study, we investigated the effect of the most widely prescribed statin, atorvastatin, on the characteristics and properties of bone-marrow-derived mesenchymal stem cells (BM-MSCs) cultured in vitro. We found that atorvastatin did not decrease the viability of BM-MSCs, nor did it change the expression of MSC cell surface markers. Atorvastatin upregulated the mRNA expression levels of VEGF-A and HGF, whereas the mRNA expression level of IGF-1 was decreased. In addition, the PI3K/AKT signaling pathway was modulated by atorvastatin as indicated by the high mRNA expression levels of PI3K and AKT. Moreover, our data revealed the upregulation of mTOR mRNA levels; however, no change was observed in the BAX and BCL-2 transcripts. We propose that atorvastatin benefits BM-MSC treatment due to its ability to upregulate angiogenesis-related genes expression and transcripts of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Adriana Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Nikola Chomaničová
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
- Correspondence:
| | - Juraj Maďarič
- Clinic of Angiology, Comenius University and National Institute of Cardiovascular Diseases, 833 48 Bratislava, Slovakia
| | - Zdenko Červenák
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Simona Valášková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Matúš Adamička
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Jan Kyselovic
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| |
Collapse
|
3
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2021; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
In-vivo evaluation of tissue scaffolds containing simvastatin loaded nanostructured lipid carriers and mesenchymal stem cells in diabetic wound healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Sienko D, Klimczak-Tomaniak D, Kulesza A, Symonides H, Kuch M, Paczek L, Burdzinska A. The influence of oxygen deprivation and donor age on the effect of statins on human mesenchymal stromal cells. Tissue Cell 2020; 67:101427. [PMID: 32911449 DOI: 10.1016/j.tice.2020.101427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
To date, no study evaluated the effect of oxygen deprivation together with statins pretreatment on human mesenchymal stromal cells (MSCs). The aim of our study was to establish the influence of atorvastatin and rosuvastatin on MSC proliferation and cytotoxicity in different oxygenic conditions. Human MSCs isolated from the bone marrow (n = 12) were incubated with statins. The proliferation rate and cytotoxic effect were evaluated in normoxic (21 %O2) and hypoxic (2%O2) conditions, also in relation to donor age. The treatment with atorvastatin was associated with significantly higher proliferation rate compared to control, both in hypoxic (19 % median increase) and normoxic conditions (20 %), p = 0.02 and p = 0.04, respectively. Atorvastatin had no significant cytotoxic effect on MSCs. Treatment with rosuvastatin in hypoxia resulted in significantly higher proliferation rate (15 %, p = 0.02) comparing to control with no significant cytotoxicity. In atmospheric oxygen concentration, rosuvastatin was associated with no significant change in proliferation and higher cytotoxicity compared to untreated control (p = 0.042 and p = 0.015, for 0.04 μM and 1 μM solutions respectively). There were no differences in the effect of statins on MSC from young donors vs. aged donors. These results suggest that statins could support MSC-based therapy of acute myocardial infarction.
Collapse
Affiliation(s)
- Damian Sienko
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Helena Symonides
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
6
|
Guo Y, Huo J, Wu D, Hao H, Ji X, Zhao E, Nie B, Liu Q. Simvastatin inhibits the adipogenesis of bone marrow‑derived mesenchymal stem cells through the downregulation of chemerin/CMKLR1 signaling. Int J Mol Med 2020; 46:751-761. [PMID: 32468037 PMCID: PMC7307816 DOI: 10.3892/ijmm.2020.4606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Simvastatin is effective in the treatment of osteoporosis, partly through the inhibition of the adipogenesis of bone-marrow derived mesenchymal stem cells (BMSCs). The present study focused on the mechanisms responsible for the inhibitory effects of simvastatin on adipogenesis and examined the effects of simvastatin on the expression of peroxisome proliferator-activated receptor γ (PPARγ), chemerin, chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1) and the adipocyte marker gene, adiponectin. BMSCs were isolated from 4-week-old female Sprague-Dawley (SD) rats, and adipogenesis was measured by the absorbance values at 490 nm of Oil Red O dye. The expression of each gene was evaluated by western blot analysis or reverse transcription-quantitative PCR (RT-qPCR). The expression of chemerin increased during adipogenesis, while CMKLR1 exhibited a trend towards a decreased expression. On days 7 and 14, the simvastatin-treated cells exhibited a down-regulated expression of chemerin, whereas the upregulated expression of its receptor, CMKLR1 was observed. The results also revealed that CMKLR1 is required for adipogenesis and the simvastatin-mediated inhibitory effect on adipogenesis. Simvastatin regulated adipogenesis by negatively modulating chemerin-CMKLR1 signaling. Importantly, simvastatin stimulation inhibited the upregulation of PPARγ and PPARγ-mediated chemerin expression to prevent adipogenesis. Treatment with the PPARγ agonist, rosiglitazone, partially reversed the negative regulatory effects of simvastatin. On the whole, the findings of the present study demonstrate that simvastatin inhibits the adipogenesis of BMSCs through the downregulation of PPARγ and subsequently prevents the PPARγ-mediated induction of chemerin/CMKLR1 signaling.
Collapse
Affiliation(s)
- Yao Guo
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jianzhong Huo
- Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Dou Wu
- Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Haihu Hao
- Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Xinghua Ji
- Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Enzhe Zhao
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Boyuan Nie
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Liu
- Department of Orthopaedics, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
7
|
Attalah Nee Rezkallah C, Thongkum A, Zhu C, Chen QM. Resveratrol for protection against statin toxicity in C2C12 and H9c2 cells. J Biochem Mol Toxicol 2020; 34:e22484. [PMID: 32196851 DOI: 10.1002/jbt.22484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
Statins are among the most commonly prescribed drugs for the treatment of high blood cholesterol. Myotoxicity of statins in certain individuals is often a severe side effect leading to withdrawal. Using C2C12 and H9c2 cells, both exhibiting characteristics of skeletal muscle cells, we addressed whether resveratrol (RSV) can prevent statin toxicity. Statins decreased cell viability in a dose and time-dependent manner. Among the five statins tested, atorvastatin, simvastatin, lovastatin, pravastatin, and fluvastatin, simvastatin is the most toxic one. Simvastatin at 10 µM caused about 65% loss of metabolic activity as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays in C2C12 cells or H9c2 cells. Inhibition of metabolic activity correlates with an increase in caspase activity. RSV was found to protect H9c2 cells from simvastatin-induced activation of caspase-3/7. However, such protection was not found in C2C12 cells. This cell type-dependent effect of RSV adds to the complexity in muscle cell toxicity of statins.
Collapse
Affiliation(s)
| | - Angkana Thongkum
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Chao Zhu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.,Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona.,Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Zhang X, Deng QH, Deng JH, Wang SJ, Chen Q. Lovastatin derivative dehydrolovastatin ameliorates ulcerative colitis in mice by suppressing NF-κB and inflammatory cytokine expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:137-147. [PMID: 32140037 PMCID: PMC7043998 DOI: 10.4196/kjpp.2020.24.2.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis (UC) is associated with intestinal immune imbalance and inflammatory response. Because dehydrolovastatin (DLVT), a derivative of lovastatin, has been recently shown to inhibit inflammation and relieve immune arthritis induced by chemical stimuli, we studied its effect and possible mechanism on UC induced by dextran sulfate sodium. The BALB/c mice were classified into six groups: normal control group, model group, DLVT high dose group, DLVT low dose group, salazosulfapyridine (SASP) group and lovastatin (LVT) group. The disease activity indices of UC and pathological changes were investigated. The myeloperoxidase (MPO) activity in colon tissue and inflammatory factors such as IL-6, IL-10, IL-17, and TNF-α in the serum were analyzed by ELISA, while the expression of NF-κB p65 protein in colon tissue was detected by immunohistochemistry and western blot. DLVT relieved the disease activity indices and pathological damage of the UC mice. Furthermore, DLVT significantly decreased MPO activity and improved the imbalance of inflammatory cytokines through inhibiting the expression of NF-κB p65. Meanwhile, the positive drug of SASP has a similar effect to DLVT, but the effect of DLVT in both decreasing IL-17, TNF-α, and increasing IL-10 was significantly stronger than that of SASP. These results suggest that DLVT may ameliorates the symptoms of UC.
Collapse
Affiliation(s)
- Xu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| | - Qing-Hua Deng
- Chongqing Medical and Pharmaceutical College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing City 401331, P.R. China
| | - Jian-Hua Deng
- People's Hospital of Shizhu County, Chongqing City 409100, P.R. China
| | - Sheng-Ju Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| |
Collapse
|
9
|
Kim BB, Tae JY, Ko Y, Park JB. Lovastatin increases the proliferation and osteoblastic differentiation of human gingiva-derived stem cells in three-dimensional cultures. Exp Ther Med 2019; 18:3425-3430. [PMID: 31602217 PMCID: PMC6777279 DOI: 10.3892/etm.2019.7971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Lovastatin is a cholesterol-lowering agent that also has effects of cell proliferation and apoptosis. The present study was performed to evaluate the effects of lovastatin on the proliferation and osteogenic differentiation of three-dimensional cell spheroids formed from human gingiva-derived stem cells (GDSCs) using concave microwells. GDSCs were plated on polydimethylsiloxane-based concave micromolds and grown in the presence of lovastatin at concentrations of 0, 2 and 6 µM. The morphology of the cells was viewed under an inverted microscope, and cell viability was determined with Cell Counting kit-8 on days 2, 7 and 14. Alkaline phosphatase activity assays were performed to evaluate the osteogenic differentiation on days 2 and 8. Alizarin red-S staining was also used to assess the mineralization of the stem cell spheroids at day 14. The results confirmed that GDSCs formed spheroids in concave microwells. No significant changes were noted with longer incubation time, and no significant differences in cell viability were noted between the three lovastatin groups at each time point. Higher osteogenic differentiation was observed in the 2 µM group when compared with the control. Mineralized extracellular deposits were visible after Alizarin red-S staining, and higher mineralization was noted in the 2 and 6 µM lovastatin groups when compared with the 0 µM control. The relative mineralization values of the 0, 2 and 6 µM groups on day 14 were 39.0±9.6, 69.3±6.0 and 60.9±7.5, respectively. This study demonstrated that the application of lovastatin enhanced the osteogenic differentiation of cell spheroids formed from GDSCs. This suggests that combinations of lovastatin and stem cell spheroids may have the potential for use in tissue engineering.
Collapse
Affiliation(s)
- Bo-Bae Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Yong Tae
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. J Appl Biomater Funct Mater 2017; 15:e133-e141. [PMID: 28291900 PMCID: PMC6379770 DOI: 10.5301/jabfm.5000338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Tissue engineering is a promising alternative for the development of bone substitutes; for this purpose, three things are necessary: stem cells, a scaffold to allow tissue growth and factors that induce tissue regeneration. METHODS To congregate such efforts, we used the bioresorbable and biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) as scaffold. For the osteoinductive factor, we used simvastatin (SIM), a drug with a pleiotropic effect on bone growth. Mesenchymal stem cells (MSCs) were cultured in PLGA containing SIM, and the bone substitute of PLGA/SIM/MSC was grafted into critical defects of rat calvaria. RESULTS The in vitro results showed that SIM directly interfered with the proliferation of MSC promoting cell death, while in the pure PLGA scaffold the MSC grew continuously. Scaffolds were implanted in the calvaria of rats and separated into groups: control (empty defect), PLGA pure, PLGA/SIM, PLGA/MSC and PLGA/SIM/MSC. The increase in bone growth was higher in the PLGA/SIM group. CONCLUSIONS We observed no improvement in the growth of bone tissue after implantation of the PLGA/SIM/MSC scaffold. As compared with in vitro results, our main hypothesis is that the microarchitecture of PLGA associated with low SIM release would have created an in vivo microenvironment of concentrated SIM that might have induced MSC death. However, our findings indicate that once implanted, both PLGA/SIM and PLGA/MSC contributed to bone formation. We suggest that strategies to maintain the viability of MSCs after cultivation in PLGA/SIM will contribute to improvement of bone regeneration.
Collapse
|