1
|
Han SI, Sunwoo SH, Park CS, Lee SP, Hyeon T, Kim DH. Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics. ACS NANO 2024; 18:12025-12048. [PMID: 38706306 DOI: 10.1021/acsnano.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
Collapse
Affiliation(s)
- Sang Ihn Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Estrada AC, Yoshida K, Saucerman JJ, Holmes JW. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech Model Mechanobiol 2021; 20:293-307. [PMID: 32970240 PMCID: PMC7897221 DOI: 10.1007/s10237-020-01385-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 01/19/2023]
Abstract
Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the contractile ability of the heart while reducing wall stress. In the current study, we constructed a multiscale model of cardiac hypertrophy that connects a finite-element model representing the mechanics of the growing left ventricle to a cell-level network model of hypertrophic signaling pathways that accounts for changes in both mechanics and hormones. We first tuned our model to capture published in vivo growth trends for isoproterenol infusion, which stimulates β-adrenergic signaling pathways without altering mechanics, and for transverse aortic constriction (TAC), which involves both elevated mechanics and altered hormone levels. We then predicted the attenuation of TAC-induced hypertrophy by two distinct genetic interventions (transgenic Gq-coupled receptor inhibitor overexpression and norepinephrine knock-out) and by two pharmacologic interventions (angiotensin receptor blocker losartan and β-blocker propranolol) and compared our predictions to published in vivo data for each intervention. Our multiscale model captured the experimental data trends reasonably well for all conditions simulated. We also found that when prescribing realistic changes in mechanics and hormones associated with TAC, the hormonal inputs were responsible for the majority of the growth predicted by the multiscale model and were necessary in order to capture the effect of the interventions for TAC.
Collapse
|
3
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
4
|
Estrada AC, Yoshida K, Clarke SA, Holmes JW. Longitudinal Reinforcement of Acute Myocardial Infarcts Improves Function by Transmurally Redistributing Stretch and Stress. J Biomech Eng 2020; 142:021009. [PMID: 31201738 PMCID: PMC7104755 DOI: 10.1115/1.4044030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/04/2019] [Indexed: 01/20/2023]
Abstract
A wide range of emerging therapies, from surgical restraint to biomaterial injection to tissue engineering, aim to improve heart function and limit adverse remodeling following myocardial infarction (MI). We previously showed that longitudinal surgical reinforcement of large anterior infarcts in dogs could significantly enhance systolic function without restricting diastolic function, but the underlying mechanisms for this improvement are poorly understood. The goal of this study was to construct a finite element model that could match our previously published data on changes in regional strains and left ventricular function following longitudinal surgical reinforcement, then use the model to explore potential mechanisms for the improvement in systolic function we observed. The model presented here, implemented in febio, matches all the key features of our experiments, including diastolic remodeling strains in the ischemic region, small shifts in the end-diastolic pressure-volume relationship (EDPVR), and large changes in the end-systolic pressure-volume relationship (ESPVR) in response to ischemia and to patch application. Detailed examination of model strains and stresses suggests that longitudinal reinforcement reduces peak diastolic fiber stretch and systolic fiber stress in the remote myocardium and shifts those peaks away from the endocardial surface by reshaping the left ventricle (LV). These findings could help to guide the development of novel therapies to improve post-MI function by providing specific design objectives.
Collapse
Affiliation(s)
- Ana Cristina Estrada
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Kyoko Yoshida
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Samantha A. Clarke
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of
Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908; Department of Medicine, School of
Medicine, University of Virginia, P.O. Box
800759, Health System, Charlottesville, VA 22908; Robert M. Berne
Cardiovascular Research Center, University of Virginia,
P.O. Box 800759, Health System, Charlottesville, VA
22908; The Center for Engineering in Medicine, University
of Virginia, P.O. Box 800759, Health System,
Charlottesville, VA 22908
| |
Collapse
|
5
|
Torres WM, Spinale FG, Shazly T. Speckle-Tracking Echocardiography Enables Model-Based Identification of Regional Stiffness Indices in the Left Ventricular Myocardium. Cardiovasc Eng Technol 2020; 11:176-187. [DOI: 10.1007/s13239-020-00456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 02/03/2023]
|
6
|
A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 2019; 3:632-643. [PMID: 30988471 DOI: 10.1038/s41551-019-0380-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Acellular epicardial patches that treat myocardial infarction by increasing the mechanical integrity of damaged left ventricular tissues exhibit widely scattered therapeutic efficacy. Here, we introduce a viscoelastic adhesive patch, made of an ionically crosslinked transparent hydrogel, that accommodates the cyclic deformation of the myocardium and outperforms most existing acellular epicardial patches in reversing left ventricular remodelling and restoring heart function after both acute and subacute myocardial infarction in rats. The superior performance of the patch results from its relatively low dynamic modulus, designed at the so-called 'gel point' via finite-element simulations of left ventricular remodelling so as to balance the fluid and solid properties of the material.
Collapse
|
7
|
Varela CE, Fan Y, Roche ET. Optimizing Epicardial Restraint and Reinforcement Following Myocardial Infarction: Moving Towards Localized, Biomimetic, and Multitherapeutic Options. Biomimetics (Basel) 2019; 4:E7. [PMID: 31105193 PMCID: PMC6477619 DOI: 10.3390/biomimetics4010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanical reinforcement of the ventricular wall after a myocardial infarction has been shown to modulate and attenuate negative remodeling that can lead to heart failure. Strategies include wraps, meshes, cardiac patches, or fluid-filled bladders. Here, we review the literature describing these strategies in the two broad categories of global restraint and local reinforcement. We further subdivide the global restraint category into biventricular and univentricular support. We discuss efforts to optimize devices in each of these categories, particularly in the last five years. These include adding functionality, biomimicry, and adjustability. We also discuss computational models of these strategies, and how they can be used to predict the reduction of stresses in the heart muscle wall. We discuss the range of timing of intervention that has been reported. Finally, we give a perspective on how novel fabrication technologies, imaging techniques, and computational models could potentially enhance these therapeutic strategies.
Collapse
Affiliation(s)
- Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ellen T Roche
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Witzenburg CM, Holmes JW. Predicting the Time Course of Ventricular Dilation and Thickening Using a Rapid Compartmental Model. J Cardiovasc Transl Res 2018; 11:109-122. [PMID: 29550925 PMCID: PMC6546110 DOI: 10.1007/s12265-018-9793-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
The ability to predict long-term growth and remodeling of the heart in individual patients could have important clinical implications, but the time to customize and run current models makes them impractical for routine clinical use. Therefore, we adapted a published growth relation for use in a compartmental model of the left ventricle (LV). The model was coupled to a circuit model of the circulation to simulate hemodynamic overload in dogs. We automatically tuned control and acute model parameters based on experimentally reported hemodynamic data and fit growth parameters to changes in LV dimensions from two experimental overload studies (one pressure, one volume). The fitted model successfully predicted the reported time course of LV dilation and thickening not only in independent studies of pressure and volume overload but also following myocardial infarction. Implemented in MATLAB on a desktop PC, the model required just 6 min to simulate 3 months of growth.
Collapse
Affiliation(s)
| | - Jeffrey W Holmes
- Biomedical Engineering, Medicine, and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Richardson WJ, Holmes JW. Emergence of Collagen Orientation Heterogeneity in Healing Infarcts and an Agent-Based Model. Biophys J 2017; 110:2266-77. [PMID: 27224491 DOI: 10.1016/j.bpj.2016.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/30/2015] [Accepted: 04/07/2016] [Indexed: 01/01/2023] Open
Abstract
Spatial heterogeneity of matrix structure can be an important determinant of tissue function. Although bulk properties of collagen structure in healing myocardial infarcts have been characterized previously, regional heterogeneity in infarct structure has received minimal attention. Herein, we quantified regional variations of collagen and nuclear orientations over the initial weeks of healing after infarction in rats, and employed a computational model of infarct remodeling to test potential explanations for the heterogeneity we observed in vivo. Fiber and cell orientation maps were generated from infarct samples acquired previously at 1, 2, 3, and 6 weeks postinfarction in a rat ligation model. We analyzed heterogeneity by calculating the dot product of each fiber or cell orientation vector with every other fiber or cell orientation vector, and plotting that dot product versus distance between the fibers or cells. This analysis revealed prominent regional heterogeneity, with alignment of both fibers and cell nuclei in local pockets far exceeding the global average. Using an agent-based model of fibroblast-mediated collagen remodeling, we found that similar levels of heterogeneity can spontaneously emerge from initially isotropic matrix via locally reinforcing cell-matrix interactions. Specifically, cells that sensed fiber orientation at a distance or remodeled fibers at a distance by traction-mediated reorientation or aligned deposition gave rise to regionally heterogeneous structures. However, only the simulations in which cells deposited collagen fibers aligned with their own orientation reproduced experimentally measured patterns of heterogeneity across all time points. These predictions warrant experimental follow-up to test the role of such mechanisms in vivo and identify opportunities to control heterogeneity for therapeutic benefit.
Collapse
Affiliation(s)
- William J Richardson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Department of Medicine, University of Virginia, Charlottesville, Virginia; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Clarke SA, Richardson WJ, Holmes JW. Modifying the mechanics of healing infarcts: Is better the enemy of good? J Mol Cell Cardiol 2015; 93:115-24. [PMID: 26631496 DOI: 10.1016/j.yjmcc.2015.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a major source of morbidity and mortality worldwide, with over 7 million people suffering infarctions each year. Heart muscle damaged during MI is replaced by a collagenous scar over a period of several weeks, and the mechanical properties of that scar tissue are a key determinant of serious post-MI complications such as infarct rupture, depression of heart function, and progression to heart failure. Thus, there is increasing interest in developing therapies that modify the structure and mechanics of healing infarct scar. Yet most prior attempts at therapeutic scar modification have failed, some catastrophically. This article reviews available information about the mechanics of healing infarct scar and the functional impact of scar mechanical properties, and attempts to infer principles that can better guide future attempts to modify scar. One important conclusion is that collagen structure, mechanics, and remodeling of healing infarct scar vary so widely among experimental models that any novel therapy should be tested across a range of species, infarct locations, and reperfusion protocols. Another lesson from past work is that the biology and mechanics of healing infarcts are sufficiently complex that the effects of interventions are often counterintuitive; for example, increasing infarct stiffness has little effect on heart function, and inhibition of matrix metalloproteases (MMPs) has little effect on scar collagen content. Computational models can help explain such counterintuitive results, and are becoming an increasingly important tool for integrating known information to better identify promising therapies and design experiments to test them. Moving forward, potentially exciting new opportunities for therapeutic modification of infarct mechanics include modulating anisotropy and promoting scar compaction.
Collapse
Affiliation(s)
- Samantha A Clarke
- Department of Biomedical Engineering, University of Virginia, United States
| | - William J Richardson
- Department of Biomedical Engineering, University of Virginia, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, United States
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, United States; Department of Medicine, University of Virginia, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, United States.
| |
Collapse
|
11
|
Holmes JW, Laksman Z, Gepstein L. Making better scar: Emerging approaches for modifying mechanical and electrical properties following infarction and ablation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:134-48. [PMID: 26615948 DOI: 10.1016/j.pbiomolbio.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
Following myocardial infarction (MI), damaged myocytes are replaced by collagenous scar tissue, which serves an important mechanical function - maintaining integrity of the heart wall against enormous mechanical forces - but also disrupts electrical function as structural and electrical remodeling in the infarct and borderzone predispose to re-entry and ventricular tachycardia. Novel emerging regenerative approaches aim to replace this scar tissue with viable myocytes. Yet an alternative strategy of therapeutically modifying selected scar properties may also prove important, and in some cases may offer similar benefits with lower risk or regulatory complexity. Here, we review potential goals for such modifications as well as recent proof-of-concept studies employing specific modifications, including gene therapy to locally increase conduction velocity or prolong the refractory period in and around the infarct scar, and modification of scar anisotropy to improve regional mechanics and pump function. Another advantage of scar modification techniques is that they have applications well beyond MI. In particular, ablation treats electrical abnormalities of the heart by intentionally generating scar to block aberrant conduction pathways. Yet in diseases such as atrial fibrillation (AF) where ablation can be extensive, treating the electrical disorder can significantly impair mechanical function. Creating smaller, denser scars that more effectively block conduction, and choosing the location of those lesions by balancing their electrical and mechanical impacts, could significantly improve outcomes for AF patients. We review some recent advances in this area, including the use of computational models to predict the mechanical effects of specific lesion sets and gene therapy for functional ablation. Overall, emerging techniques for modifying scar properties represents a potentially important set of tools for improving patient outcomes across a range of heart diseases, whether used in place of or as an adjunct to regenerative approaches.
Collapse
Affiliation(s)
- Jeffrey W Holmes
- Departments of Biomedical Engineering and Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Zachary Laksman
- Cardiac Electrophysiology, University of British Columbia, Vancouver, BC, Canada
| | - Lior Gepstein
- Departments of Cardiology (Ramban Health Care Campus) and Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Richardson WJ, Holmes JW. Why Is Infarct Expansion Such an Elusive Therapeutic Target? J Cardiovasc Transl Res 2015; 8:421-30. [PMID: 26390882 PMCID: PMC4846979 DOI: 10.1007/s12265-015-9652-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022]
Abstract
Myocardial infarct expansion has been associated with an increased risk of infarct rupture and progression to heart failure, motivating therapies such as infarct restraint and polymer injection that aim to limit infarct expansion. However, an exhaustive review of quantitative studies of infarct remodeling reveals that only half found chronic in-plane expansion, and many reported in-plane compaction. Using a finite element model, we demonstrate that the balance between scar stiffening due to collagen accumulation and increased wall stresses due to infarct thinning can produce either expansion or compaction in the pressurized heart-potentially explaining variability in the literature-and that loaded dimensions are much more sensitive to changes in thickness than in stiffness. Our analysis challenges the concept that in-plane expansion is a central feature of post-infarction remodeling; rather, available data suggest that radial thinning is the dominant process during infarct healing and may be an attractive therapeutic target.
Collapse
Affiliation(s)
- William J Richardson
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|