1
|
Yajima S, Lee SH, Yang J, Vergel MD, Manna MK, Kusadokoro S, Zhu Y, Elde S, Mullis DM, Venkatesh A, Ethiraj S, Ueyama T, Takashima H, Oh SE, Huynh C, Wang H, Shudo Y, Miyagawa S, Sawa Y, Rajadas J, Woo YJ. Stromal cell-derived factor-encapsulated nanoparticles target ischemic myocardium and attenuate myocardial injury via proangiogenic effects. Biomaterials 2025; 318:123167. [PMID: 39947060 DOI: 10.1016/j.biomaterials.2025.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Lipid bilayer nanoparticles (NPs) with and without stromal cell-derived factor (SDF) were created to target and treat ischemia/reperfusion (I/R)-injured myocardium. Male Wistar rats were subjected to myocardial I/R insult and, at reperfusion, randomized to receive systemic injections of 5 mL/kg PBS, 6 μg/kg of NPs, SDF, or SDF-NPs. Four days after treatment, SDF-NPs circulated and accumulated selectively in the ischemic myocardium, with an SDF concentration roughly three times that of the other three treatments. SDF-NP-treated rats had more endothelial progenitor cells (EPCs) in the blood and preserved capillaries and arterioles in the ischemic border myocardium four weeks post-treatment, which improved microvascular perfusion, reduced fibrosis, and preserved heart function. Notably, hearts treated with SDF-NPs retained left ventricular function at four weeks compared to 1-day post-treatment, with a 2.7 ± 1.2 % increase in the ejection fraction. The other three treatments decreased left ventricular function at four weeks (PBS: -7.8 ± 1.2 %, P < 0.001; empty NPs: -3.9 ± 1.3 %, P = 0.004; SDF solution: -5.1 ± 1.3 %, P = 0.001). Hence, systemically injected SDF-NPs selectively accumulate in ischemic cardiac tissue, shielding the myocardium from I/R injury via angiogenic effects through increased EPC migration. This novel cardioprotective drug may be clinically translatable.
Collapse
Affiliation(s)
- Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seung Hyun Lee
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Junkai Yang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew D Vergel
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Manoj K Manna
- Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Akshay Venkatesh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Sidarth Ethiraj
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Tsuyoshi Ueyama
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Hiroyuki Takashima
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Samuel E Oh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Chris Huynh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jayakumar Rajadas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Nakamura M, Huang GN. Why some hearts heal and others don't: The phylogenetic landscape of cardiac regenerative capacity. Semin Cell Dev Biol 2025; 170:103609. [PMID: 40220599 DOI: 10.1016/j.semcdb.2025.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The limited ability of adult humans to replenish lost heart muscle cells after a heart attack has attracted scientists to explore natural heart regeneration capabilities in the animal kingdom. In particular, research has accelerated since the landmark discovery more than twenty years ago that zebrafish can completely regrow myocardial tissue. In this review, we survey heart regeneration studies in diverse model and non-model animals, aiming to gain insights into both the evolutionary trends in cardiac regenerative potential and the variations among closely related species. Differences in cardiomyogenesis, vasculature formation, and the communication between cardiovascular cells and other players have been investigated to understand the cellular basis, although the precise molecular and genetic causes underlying the stark differences in cardiac regenerative potential among certain close cousins remain largely unknown. By studying cardiovascular regeneration and repair in diverse organisms, we may uncover distinct mechanisms, offering new perspectives for advancing regenerative medicine.
Collapse
Affiliation(s)
- Makoto Nakamura
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
5
|
Baccouche BM, Elde S, Wang H, Woo YJ. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible. NPJ Regen Med 2024; 9:18. [PMID: 38688935 PMCID: PMC11061134 DOI: 10.1038/s41536-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Complete cardiac regeneration remains an elusive therapeutic goal. Although much attention has been focused on cardiomyocyte proliferation, especially in neonatal mammals, recent investigations have unearthed mechanisms by which non-cardiomyocytes, such as endothelial cells, fibroblasts, macrophages, and other immune cells, play critical roles in modulating the regenerative capacity of the injured heart. The degree to which each of these cell types influence cardiac regeneration, however, remains incompletely understood. This review highlights the roles of these non-cardiomyocytes and their respective contributions to cardiac regeneration, with emphasis on natural heart regeneration after cardiac injury during the neonatal period.
Collapse
Affiliation(s)
- Basil M Baccouche
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Stefan Elde
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Hanjay Wang
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Y Joseph Woo
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Shao Y, Xu C, Zhu S, Wu J, Sun C, Huang S, Li G, Yang W, Zhang T, Ma XL, Du J, Li P, Xu FJ, Li Y. One Endothelium-Targeted Combined Nucleic Acid Delivery System for Myocardial Infarction Therapy. ACS NANO 2024; 18:8107-8124. [PMID: 38442075 DOI: 10.1021/acsnano.3c11661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.
Collapse
Affiliation(s)
- Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianing Wu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Canghao Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Weijie Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
7
|
Li D, Tian K, Guo J, Wang Q, Qin Z, Lu Y, Xu Y, Scott N, Charles CJ, Liu G, Zhang J, Cui X, Tang J. Growth factors: avenues for the treatment of myocardial infarction and potential delivery strategies. Regen Med 2022; 17:561-579. [PMID: 35638395 DOI: 10.2217/rme-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Despite recent advances in clinical management, reoccurence of heart failure after AMI remains high, in part because of the limited capacity of cardiac tissue to repair after AMI-induced cell death. Growth factor-based therapy has emerged as an alternative AMI treatment strategy. Understanding the underlying mechanisms of growth factor cardioprotective and regenerative actions is important. This review focuses on the function of different growth factors at each stage of the cardiac repair process. Recent evidence for growth factor therapy in preclinical and clinical trials is included. Finally, different delivery strategies are reviewed with a view to providing workable strategies for clinical translation.
Collapse
Affiliation(s)
- Demin Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Kang Tian
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yanyan Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Nicola Scott
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, 8011, New Zealand
| | - Chris J Charles
- Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Department of Bone and Joint, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China.,Department of Orthopedic Surgery and Musculoskeletal Medicine, Christchurch Regenerative Medicine and Tissue Engineering Group, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450052, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
8
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
The Role of Chemokines in Cardiovascular Diseases and the Therapeutic Effect of Curcumin on CXCL8 and CCL2 as Pathological Chemokines in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:155-170. [PMID: 34981477 DOI: 10.1007/978-3-030-73234-9_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin, as a vegetative flavonoid, has a protective and therapeutic role in various adverse states such as oxidative stress and inflammation. Remedial properties of this component have been reported in the different chronic diseases including cancers (myeloma, pancreatic, breast, colorectal), vitiligo, psoriasis, neuropathic pains, inflammatory disorders (osteoarthritis, uveitis, ulcerative colitis, Alzheimer), cardiovascular conditions, and diabetes.Cardiovascular disorders include atherosclerosis and various manifestations of atherosclerosis such as stroke, and myocardial infarction (MI) is the leading cause of mortality globally. Studies have shown varying expressions of inflammatory and non-inflammatory chemokines and chemokine receptors in cardiovascular disease, which have been highlighted first in this review. The alteration in chemokines secretion and chemokine receptors has an essential role in the pathophysiology of cardiovascular disease. Chemokines as cytokines with low molecular weight (8-12 kDa) mediate white blood cell (WBC) chemotactic reactions, vascular cell migration, and proliferation that induce endothelial dysfunction, atherogenesis, and cardiac hypertrophy.Several studies reported that curcumin could be advantageous in the attenuation of cardiovascular diseases via anti-inflammatory effects and redress of chemokine secretion and chemokine receptors. We present these studies with a focus on two chemokines: CXCL8 (IL-8) and CCL2 (chemoattractant protein 1 or MCP-1). Future research will further elucidate the precise potential of curcumin on chemokines in the adjustment of cardiovascular system activity or curcumin chemokine-based therapies.
Collapse
|
10
|
Zhu Y, Woo YJ. Photosynthetic symbiotic therapeutics - An innovative, effective treatment for ischemic cardiovascular diseases. J Mol Cell Cardiol 2021; 164:51-57. [PMID: 34813842 DOI: 10.1016/j.yjmcc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Ischemic heart disease is a major cause of global morbidity and mortality, affecting over 15 million patients in the United States. Recent advances in research and innovation have greatly broadened clinicians' ability to treatment ischemic heart disease and associated heart failure using various preventive, pharmacologic, and surgical strategies. Specifically, innovative photosynthetic symbiotic systems using Synechococcus elongatus has gained significant attention. S. elongatus is a unicellular cyanobacterium that can carry out oxygenic photosynthesis. Photosynthetic therapies have been developed to rescue ischemic tissue by taking up tissue-derived carbon dioxide and in turn releasing oxygen for sustained aerobic metabolism during ischemia. In this article, we review the application of cyanobacteria, specifically S. elongatus, in the field of biotechnology, ischemic heart disease, and other clinical applications in ischemic diseases. We also address the motivation for innovation and current limitations in the field of S. elongatus photosynthetic therapeutics for ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States of America; Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States of America; Department of Bioengineering, Stanford University, Stanford, CA, United States of America.
| |
Collapse
|
11
|
Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen Thorac Cardiovasc Surg 2021; 70:1-10. [PMID: 34510332 PMCID: PMC8732940 DOI: 10.1007/s11748-021-01696-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is regarded as a promising candidate for the treatment of ischaemic heart disease. The major hurdles for successful clinical translation of MSC therapy are poor survival, retention, and engraftment in the infarcted heart. Stromal cell-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) constitutes one of the most efficient chemokine/chemokine receptor pairs regarding cell homing. In this review, we mainly focused on previous studies on how to regulate the SDF-1/CXCR4 interaction through various priming strategies to maximize the efficacy of mesenchymal stem cell transplantation on ischaemic hearts or to facilitate the required effects. The strengthened measures for enhancing the therapeutic efficacy of the SDF-1/CXCR4 interaction for mesenchymal stem cell transplantation included the combination of chemokines and cytokines, hormones and drugs, biomaterials, gene engineering, and hypoxia. The priming strategies on recipients for stem cell transplantation included ischaemic conditioning and device techniques.
Collapse
|
12
|
Wang H, Hironaka CE, Mullis DM, Lucian HJ, Shin HS, Tran NA, Thakore AD, Anilkumar S, Wu MA, Paulsen MJ, Zhu Y, Baker SW, Woo YJ. A neonatal leporine model of age-dependent natural heart regeneration after myocardial infarction. J Thorac Cardiovasc Surg 2021; 164:e389-e405. [PMID: 34649718 DOI: 10.1016/j.jtcvs.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Neonatal rodents and piglets naturally regenerate the injured heart after myocardial infarction. We hypothesized that neonatal rabbits also exhibit natural heart regeneration after myocardial infarction. METHODS New Zealand white rabbit kits underwent sham surgery or left coronary ligation on postnatal day 1 (n = 94), postnatal day 4 (n = 11), or postnatal day 7 (n = 52). Hearts were explanted 1 day postsurgery to confirm ischemic injury, at 1 week postsurgery to assess cardiomyocyte proliferation, and at 3 weeks postsurgery to assess left ventricular ejection fraction and scar size. Data are presented as mean ± standard deviation. RESULTS Size of ischemic injury as a percentage of left ventricular area was similar after myocardial infarction on postnatal day 1 versus on postnatal day 7 (42.3% ± 5.4% vs 42.3% ± 4.7%, P = .9984). Echocardiography confirmed severely reduced ejection fraction at 1 day after postnatal day 1 myocardial infarction (33.7% ± 5.3% vs 65.2% ± 5.5% for postnatal day 1 sham, P = .0001), but no difference at 3 weeks after postnatal day 1 myocardial infarction (56.0% ± 4.0% vs 58.0% ± 3.3% for postnatal day 1 sham, P = .2198). Ejection fraction failed to recover after postnatal day 4 myocardial infarction (49.2% ± 1.8% vs 58.5% ± 5.8% for postnatal day 4 sham, P = .0109) and postnatal day 7 myocardial infarction (39.0% ± 7.8% vs 60.2% ± 5.0% for postnatal day 7 sham, P < .0001). At 3 weeks after infarction, fibrotic scar represented 5.3% ± 1.9%, 14.3% ± 4.9%, and 25.4% ± 13.3% of the left ventricle area in the postnatal day 1, postnatal day 4, and postnatal day 7 groups, respectively. An increased proportion of peri-infarct cardiomyocytes expressed Ki67 (15.9% ± 1.8% vs 10.2% ± 0.8%, P = .0039) and aurora B kinase (4.0% ± 0.9% vs 1.5% ± 0.6%, P = .0088) after postnatal day 1 myocardial infarction compared with sham, but no increase was observed after postnatal day 7 myocardial infarction. CONCLUSIONS A neonatal leporine myocardial infarction model reveals that newborn rabbits are capable of age-dependent natural heart regeneration.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Stanford Cardiovascular Institute, Stanford University, Stanford, Calif
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Nicholas A Tran
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Stanford Cardiovascular Institute, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif.
| |
Collapse
|
13
|
Red-Horse K, Das S. New Research Is Shining Light on How Collateral Arteries Form in the Heart: a Future Therapeutic Direction? Curr Cardiol Rep 2021; 23:30. [PMID: 33655379 DOI: 10.1007/s11886-021-01460-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Collateral arteries create artery-artery anastomoses that could serve as natural bypasses that in the heart could relieve the various complications of ischemia heart disease. Recent work using animal models have begun to reveal details of how coronary collateral arteries form. RECENT FINDINGS Mouse genetics has been used to study the cellular and molecular mechanisms of collateral artery development. Collateral arteries are not pre-existing in the mouse heart, and only form in response to injury. Myocardial infarction creates tissue hypoxia that triggers the expression of growth factors and chemokines that guide collaterogenesis. Collateral development is more robust in neonatal hearts when compared with adults, and contributes to neonatal heart regeneration. The identification of signaling pathways and cellular responses underlying coronary collateral artery development suggests potential translational strategies. Continued investigation into this subject could lead to the identification of targetable pathways that induce collateral arteries for cardiac revascularization.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| |
Collapse
|
14
|
Brezitski KD, Goff AW, DeBenedittis P, Karra R. A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals. Curr Cardiol Rep 2021; 23:29. [PMID: 33655359 DOI: 10.1007/s11886-021-01459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The replenishment of lost or damaged myocardium has the potential to reverse heart failure, making heart regeneration a goal for cardiovascular medicine. Unlike adult mammals, injury to the zebrafish or neonatal mouse heart induces a robust regenerative program with minimal scarring. Recent insights into the cellular and molecular mechanisms of heart regeneration suggest that the machinery for regeneration is conserved from zebrafish to mammals. Here, we will review conserved mechanisms of heart regeneration and their translational implications. RECENT FINDINGS Based on studies in zebrafish and neonatal mice, cardiomyocyte proliferation has emerged as a primary strategy for effecting regeneration in the adult mammalian heart. Recent work has revealed pathways for stimulating cardiomyocyte cell cycle reentry; potential developmental barriers for cardiomyocyte proliferation; and the critical role of additional cell types to support heart regeneration. Studies in zebrafish and neonatal mice have established a template for heart regeneration. Continued comparative work has the potential to inform the translation of regenerative biology into therapeutics.
Collapse
Affiliation(s)
- Kyla D Brezitski
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Alexander W Goff
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Paige DeBenedittis
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA.,Regeneration Next, Durham, NC, USA
| | - Ravi Karra
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA. .,Regeneration Next, Durham, NC, USA. .,Department of Pathology, Durham, NC, USA. .,Center for Aging, Durham, NC, USA.
| |
Collapse
|
15
|
Abstract
In the infarcted myocardium, cardiomyocyte necrosis triggers an intense inflammatory reaction that not only is critical for cardiac repair, but also contributes to adverse remodeling and to the pathogenesis of heart failure. Both CC and CXC chemokines are markedly induced in the infarcted heart, bind to endothelial glycosaminoglycans, and regulate leukocyte trafficking and function. ELR+ CXC chemokines (such as CXCL8) control neutrophil infiltration, whereas CC chemokines (such as CCL2) mediate recruitment of mononuclear cells. Moreover, some members of the chemokine family (such as CXCL10 and CXCL12) may mediate leukocyte-independent actions, directly modulating fibroblast and vascular cell function. This review manuscript discusses our understanding of the role of the chemokines in regulation of injury, repair, and remodeling following myocardial infarction. Although several chemokines may be promising therapeutic targets in patients with myocardial infarction, clinical implementation of chemokine-based therapeutics is hampered by the broad effects of the chemokines in both injury and repair.
Collapse
|
16
|
Steele AN, Paulsen MJ, Wang H, Stapleton LM, Lucian HJ, Eskandari A, Hironaka CE, Farry JM, Baker SW, Thakore AD, Jaatinen KJ, Tada Y, Hollander MJ, Williams KM, Seymour AJ, Totherow KP, Yu AC, Cochran JR, Appel EA, Woo YJ. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine 2020; 127:154974. [DOI: 10.1016/j.cyto.2019.154974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
17
|
Gao Z, Gao Q, Lv X. MicroRNA-668-3p Protects Against Oxygen-Glucose Deprivation in a Rat H9c2 Cardiomyocyte Model of Ischemia-Reperfusion Injury by Targeting the Stromal Cell-Derived Factor-1 (SDF-1)/CXCR4 Signaling Pathway. Med Sci Monit 2020; 26:e919601. [PMID: 31997826 PMCID: PMC7003666 DOI: 10.12659/msm.919601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) results from the restoration of blood supply to ischemic organs, including the heart. Expression of microRNA-668-3p (miR-668-3p) is known to protect the kidney from IRI. This study aimed to investigate the role of miR-668-3p in oxygen-glucose deprivation (OGD) in a rat H9c2 cardiomyocyte model of IRI. Material/Methods Rat H9c2 cardiomyocytes were cultured in glucose-free Dulbecco’s modified Eagle’s medium (DMEM) under anaerobic conditions, followed by oxygenation, to create the OGD model of IRI. The luciferase reporter assay evaluated the interaction between stromal cell-derived factor-1 (SDF-1), or CXC motif chemokine 12 (CXCL12), and miR-668-3p. Protein and mRNA levels of SDF-1, CXCR4, Bcl2, Bax, cleaved caspase-3, endothelial nitric oxide synthase (eNOS), and phosphorylated endothelial nitric oxide synthase (p-eNOS) were analyzed by Western blot and quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and apoptosis were assessed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) measured reactive oxygen species (ROS), including malondialdehyde (MDA), nitric oxide (NO), p-eNOS, and the inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1) in H9c2 cell supernatants. Results In the OGD rat H9c2 cardiomyocyte model of IRI, miR-668-3p levels were reduced. Overexpression of miR-668-3p inhibited SDF-1, CXCR4, the expression of inflammatory cytokines, markers of oxidative stress, and p-eNOS. The overexpression of SDF-1 reversed these findings. Overexpression of SDF-1 promoted cell apoptosis, which was reduced by miR-668-3p. Conclusions In the OGD rat H9c2 cardiomyocyte model of IRI, miR-668-3p suppressed mediators of inflammation and oxidative stress and enhanced cell viability through the SDF-1/CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Cardiovascular Surgery, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Qiang Gao
- Department of Cardiovascular Surgery, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Xiaodong Lv
- Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
18
|
Abstract
With the incidence and impact of atherosclerotic cardiovascular disease and its clinical manifestations still rising, therapeutic options that target the causal mechanisms of this disorder are highly desired. Since the CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) has demonstrated that lowering inflammation can be beneficial, focusing on mechanisms underlying inflammation, for example, leukocyte recruitment, is feasible. Being key orchestrators of leukocyte trafficking, chemokines have not lost their attractiveness as therapeutic targets, despite the difficult road to drug approval thus far. Still, innovative therapeutic approaches are being developed, paving the road towards the first chemokine-based therapeutic against inflammation. In this overview, recent developments for chemokines and for the chemokine-like factor MIF (macrophage migration inhibitory factor) will be discussed.
Collapse
|
19
|
Steele AN, Stapleton LM, Farry JM, Lucian HJ, Paulsen MJ, Eskandari A, Hironaka CE, Thakore AD, Wang H, Yu AC, Chan D, Appel EA, Woo YJ. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering. Adv Healthc Mater 2019; 8:e1801147. [PMID: 30714355 DOI: 10.1002/adhm.201801147] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels have emerged as a diverse class of biomaterials offering a broad range of biomedical applications. Specifically, injectable hydrogels are advantageous for minimally invasive delivery of various therapeutics and have great potential to treat a number of diseases. However, most current injectable hydrogels are limited by difficult and time-consuming fabrication techniques and are unable to be delivered through long, narrow catheters, preventing extensive clinical translation. Here, the development of an easily-scaled, catheter-injectable hydrogel utilizing a polymer-nanoparticle crosslinking mechanism is reported, which exhibits notable shear-thinning and self-healing behavior. Gelation of the hydrogel occurs immediately upon mixing the biochemically modified hyaluronic acid polymer with biodegradable nanoparticles and can be easily injected through a high-gauge syringe due to the dynamic nature of the strong, yet reversible crosslinks. Furthermore, the ability to deliver this novel hydrogel through a long, narrow, physiologically-relevant catheter affixed with a 28-G needle is highlighted, with hydrogel mechanics unchanged after delivery. Due to the composition of the gel, it is demonstrated that therapeutics can be differentially released with distinct elution profiles, allowing precise control over drug delivery. Finally, the cell-signaling and biocompatibility properties of this innovative hydrogel are demonstrated, revealing its wide range of therapeutic applications.
Collapse
Affiliation(s)
- Amanda N. Steele
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Lyndsay M. Stapleton
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Justin M. Farry
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Camille E. Hironaka
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Akshara D. Thakore
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| | - Anthony C. Yu
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Doreen Chan
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Materials Science & Engineering; Stanford University; Stanford CA 94305 USA
| | - Yiping Joseph Woo
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
- Department of Cardiothoracic Surgery; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
20
|
Abstract
The adult mammalian heart is minimally regenerative after injury, whereas neonatal hearts fully recover even after major damage. New work from the Red-Horse and Woo labs (Das et al., 2019) shows that collateral artery formation is a key mechanism contributing to successful regeneration in newborn mice and provides insights into how collateral arteries form.
Collapse
Affiliation(s)
- Evan S Bardot
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Das S, Goldstone AB, Wang H, Farry J, D'Amato G, Paulsen MJ, Eskandari A, Hironaka CE, Phansalkar R, Sharma B, Rhee S, Shamskhou EA, Agalliu D, de Jesus Perez V, Woo YJ, Red-Horse K. A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell 2019; 176:1128-1142.e18. [PMID: 30686582 DOI: 10.1016/j.cell.2018.12.023] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/13/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.
Collapse
Affiliation(s)
- Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin Farry
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gaetano D'Amato
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ragini Phansalkar
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elya Ali Shamskhou
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dritan Agalliu
- Departments of Neurology, Pathology and Cell Biology, and Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Pesaresi M, Bonilla-Pons SA, Cosma MP. In vivo somatic cell reprogramming for tissue regeneration: the emerging role of the local microenvironment. Curr Opin Cell Biol 2018; 55:119-128. [PMID: 30071468 DOI: 10.1016/j.ceb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The past few years have witnessed an exponential increase of interest in the reprogramming process. This has been motivated by the enthusiasm of unravelling key aspects not only of cell identity and dedifferentiation, but also of the endogenous regenerative capacities of mammalian organs. Here, we present the most recent advances in the field of reprogramming, stressing how they are re-defining the rules of cell fate and plasticity in vivo. Specifically, we focus on the emerging role of the tissue microenvironment, with particular emphasis on tissue damage, inflammation and senescence that can facilitate in vivo reprogramming and regeneration through cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|