1
|
Mazucato VDS, Vieira PC. Exploring the chemical diversity of phytopathogenic fungi infecting edible fruits. Nat Prod Res 2023; 37:3947-3955. [PMID: 36597649 DOI: 10.1080/14786419.2022.2163482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Two fungi, Fusarium guttiforme and Colletotrichum horii, were cultured under different conditions to obtain fourteen compounds. The axenic cultures of F. guttiforme and C. horii in potato dextrose broth (PDB) medium yielded fusaric acid (1), 9,10-dehydrofusaric acid (2), and tyrosol, whereas their co-cultivation produced fusarinol (5), a fusaric acid complex with magnesium (3), 9,10-dehydrofusaric acid complex with magnesium (4), and 5-butyl-5-(hydroxymethyl) dihydrofuranone (9). Upon changing the medium from PDB to Czapek, different compounds (uracil, p-hydroxy acetophenone, and cyclo(L-Leu-L-Pro) were obtained. Fusaric acid (1) was biotransformed into fusarinol (5) by C. horii, suggesting a detoxification process, and three other compounds were obtained: 7-hydroxyfusarinol (7), 9,10-dehydrofusarinol (6), and fusarinyl acetate (8). Epigenetic modulation of suberohydroxamic acid against F. guttiforme afforded gibepyrone B (10). These compounds were subjected to a papain inhibition enzymatic assay; the highest inhibitory activity was displayed by the two magnesium complexes, at 56 and 54% inhibition, respectively.
Collapse
Affiliation(s)
- Vitor de S Mazucato
- Departament of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo C Vieira
- Departament of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Martín-Aragón VR, Millán FR, Cuadrado C, Daranas AH, Medarde AF, López JMS. Induction of New Aromatic Polyketides from the Marine Actinobacterium Streptomyces griseorubiginosus through an OSMAC Approach. Mar Drugs 2023; 21:526. [PMID: 37888461 PMCID: PMC10608293 DOI: 10.3390/md21100526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of a repertoire of 23 secondary metabolites (1-23), wherein five compounds were unprecedented as natural products (19-23). Specifically, compounds 19 and 20 showcased novel anthrone backbones, while compound 23 displayed a distinctive tetralone structure. Additionally, compounds 21 and 22 presented an unusual naphtho [2,3-c]furan-4(9H)-one chromophore. Interestingly, the detection of all these novel compounds (19-23) was exclusively achieved when the bacterium was cultured in FA-1 liquid medium supplemented with the epigenetic modifier γ-butyrolactone. The elucidation of the structural features of the newfound compounds was accomplished through a combination of HRESIMS, 1D and 2D NMR spectroscopy, as well as QM-NMR (Quantum Mechanical-Nuclear Magnetic Resonance) methods and by comparison with existing literature. Moreover, the determination of the relative configuration of compound 23 was facilitated by employing the mix-J-DP4 computational approach.
Collapse
Affiliation(s)
- Víctor Rodríguez Martín-Aragón
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain; (V.R.M.-A.); (F.R.M.); (A.F.M.)
| | - Francisco Romero Millán
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain; (V.R.M.-A.); (F.R.M.); (A.F.M.)
| | - Cristina Cuadrado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain;
| | - Antonio Hernández Daranas
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain;
| | - Antonio Fernández Medarde
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain; (V.R.M.-A.); (F.R.M.); (A.F.M.)
| | - José M. Sánchez López
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain; (V.R.M.-A.); (F.R.M.); (A.F.M.)
| |
Collapse
|
3
|
Wang P, Lv L, Li H, Wang CY, Zhou J. Opportunities and challenges in drug discovery targeting the orphan receptor GPR12. Drug Discov Today 2023; 28:103698. [PMID: 37422169 DOI: 10.1016/j.drudis.2023.103698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
G-protein-coupled receptor 12 (GPR12) is a brain-specific expression orphan G-protein-coupled receptor (oGPCR) that regulates various physiological processes. It is an emerging therapeutic target for central nervous system (CNS) disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), attention deficit hyperactivity disorder (ADHD), and schizophrenia, as well as other human diseases, such as cancer, obesity, and metabolic disorders. GPR12 remains a less extensively investigated oGPCR, particularly in terms of its biological functions, signaling pathways, and ligand discovery. The discovery of drug-like small-molecule modulators to probe the brain functions of GPR12 or to act as a potential drug candidates, as well as the identification of reliable biomarkers, are vital to elucidate the roles of this receptor in various human diseases and develop novel target-based therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ling Lv
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haoran Li
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
4
|
Alqahtani O, Stapleton P, Gibbons S. Production of antibacterial compounds using Bacillus spp. isolated from thermal springs in Saudi Arabia. Saudi Pharm J 2023; 31:1237-1243. [PMID: 37284417 PMCID: PMC10239688 DOI: 10.1016/j.jsps.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Seventeen water samples were collected from four different thermal springs in Saudi Arabia. Microbiological assays were used to assess the antibacterial activities of bacterial colonies against antibiotic-resistant and susceptible-bacterial strains, and 16S rRNA gene sequencing was used to identify the genus and species of these antibiotic-producing bacteria. Chromatography and spectroscopy were used to separate the active compounds and help figuring out what their structures were. Four compounds were isolated using bacteria: N-acetyltryptamine (1), isovaleric acid (2), ethyl-4-ethoxybenzoate (3) and phenylacetic acid (4). Compounds 1, 2 and 4 were produced from Bacillus pumilus and 3 was from Bacillus licheniformis (AH-E1). The outcomes of the minimum inhibitory concentrations (MICs) showed that all pure compounds produced in this work had antibacterial activities against Gram-positive pathogens (between 128 mg/L and 512 mg/L compared to the control) and compound 2 had activity against E. coli.
Collapse
Affiliation(s)
- Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Paul Stapleton
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gibbons
- Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool L3 3AF, England, UK
| |
Collapse
|
5
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Masi M, Castaldi S, Sautua F, Pescitelli G, Carmona MA, Evidente A. Truncatenolide, a Bioactive Disubstituted Nonenolide Produced by Colletotrichum truncatum, the Causal Agent of Anthracnose of Soybean in Argentina: Fungal Antagonism and SAR Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9834-9844. [PMID: 35925677 PMCID: PMC9389607 DOI: 10.1021/acs.jafc.2c02502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bioactive disubstituted nonenolide, named truncatenolide, was produced by Colletotrichum truncatum, which was collected from infected tissues of soybean showing anthracnose symptoms in Argentina. This is a devastating disease that drastically reduces the yield of soybean production in the world. The fungus also produced a new trisubstituted oct-2-en-4-one, named truncatenone, and the well-known tyrosol and N-acetyltyramine. Truncatenolide and truncatenone were characterized by spectroscopic (essentially one-dimensional (1D) and two-dimensional (2D) 1H and 13C NMR and HR ESIMS) and chemical methods as (5E,7R,10R)-7-hydroxy-10-methyl-3,4,7,8,9,10-hexahydro-2H-oxecin-2-one and (Z)-6-hydroxy-3,5-dimethyloct-2-en-4-one, respectively. The geometry of the double bond of truncatenolide was assigned by the value of olefinic proton coupling constant and that of truncatenone by the correlation observed in the corresponding NOESY spectrum. The relative configuration of each stereogenic center was assigned with the help of 13C chemical shift and 1H-1H scalar coupling DFT calculations, while the absolute configuration assignment of truncatenolide was performed by electronic circular dichroism (ECD). When tested on soybean seeds, truncatenolide showed the strongest phytotoxic activity. Tyrosol and N-acetyltyramine also showed phytotoxicity to a lesser extent, while truncatenone weakly stimulated the growth of the seed root in comparison to the control. When assayed against Macrophomina phaseolina and Cercospora nicotianae, other severe pathogens of soybean, truncatenolide showed significant activity against M. phaseolina and total inhibition of C. nicotianae. Thus, some other fungal nonenolides and their derivatives were assayed for their antifungal activity against both fungi in comparison with truncatenolide. Pinolidoxin showed to a less extent antifungal activity against both fungi, while modiolide A selectively and totally inhibited only the growth of C. nicotianae. The SAR results and the potential of truncatenolide, modiolide A, and pinolidoxin as biofungicides were also discussed.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Stefany Castaldi
- Dipartimento
di Biologia, Università di Napoli
Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Francisco Sautua
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi
13, 56124 Pisa, Italy
| | - Marcelo Anibal Carmona
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Antonio Evidente
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
7
|
Yue Y, Chen C, Zhong K, Wu Y, Gao H. Purification, Fermentation Optimization, and Antibacterial Activity of Pyrrole-2-carboxylic Acid Produced by an Endophytic Bacterium, Bacillus cereus ZBE, Isolated from Zanthoxylum bungeanum. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuxi Yue
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Chong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, P. R. China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Biringer RG. Endocannabinoid signaling pathways: beyond CB1R and CB2R. J Cell Commun Signal 2021; 15:335-360. [PMID: 33978927 PMCID: PMC8222499 DOI: 10.1007/s12079-021-00622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
9
|
Lee S, Seo YH, Song JH, Kim WJ, Lee JH, Moon BC, Ang MJ, Kim SH, Moon C, Lee J, Kim JS. Neuroprotective Effect of Protaetia brevitarsis seulensis' Water Extract on Trimethyltin-Induced Seizures and Hippocampal Neurodegeneration. Int J Mol Sci 2021; 22:ijms22020679. [PMID: 33445535 PMCID: PMC7827571 DOI: 10.3390/ijms22020679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate whether the Protaetia brevitarsis seulensis (PB)’ water extract (PBWE) ameliorates trimethyltin (TMT)-induced seizures and hippocampal neurodegeneration. To investigate the potential neuroprotective effect of the PBWE in vitro, a lactate dehydrogenase (LDH) assay was conducted in TMT-treated primary cultures of mouse hippocampal neurons. In TMT-treated adult C57BL/6 mice, behavioral and histopathological changes were evaluated by seizure scoring and Fluoro-Jade C staining, respectively. In our in vitro assay, we observed that pretreating mice hippocampal neuron cultures with the PBWE reduced TMT-induced cytotoxicity, as indicated by the decreased LDH release. Furthermore, pretreatment with the PBWE alleviated seizures and hippocampal neurodegeneration in TMT-treated mice. The antioxidant activity of the PBWE increased in a dose-dependent manner; moreover, pretreatment with the PBWE mitigated the TMT-induced Nrf2 stimulation. In addition, six major compounds, including adenine, hypoxanthine, uridine, adenosine, inosine, and benzoic acid, were isolated from the PBWE, and among them, inosine and benzoic acid have been confirmed to have an essential antioxidative activity. In conclusion, the PBWE ameliorated TMT-induced toxicity in hippocampal neurons in both in vitro and in vivo assays, through a potential antioxidative effect. Our findings suggest that the PBWE may have pharmacotherapeutic potential in neurodegenerative diseases such as seizures or epilepsy.
Collapse
Affiliation(s)
- Sueun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Young Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Jun Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Ji Hye Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
| | - Mary Jasmin Ang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.H.K.); (C.M.)
| | - Sung Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.H.K.); (C.M.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea; (M.J.A.); (S.H.K.); (C.M.)
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
- Correspondence: (J.L.); (J.S.K.); Tel.: +82-61-338-7129 (J.L.); +82-61-338-7111 (J.S.K.)
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (S.L.); (Y.H.S.); (J.H.S.); (W.J.K.); (J.H.L.); (B.C.M.)
- Correspondence: (J.L.); (J.S.K.); Tel.: +82-61-338-7129 (J.L.); +82-61-338-7111 (J.S.K.)
| |
Collapse
|
10
|
Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol 2020; 46:750-758. [PMID: 33044894 DOI: 10.1080/1040841x.2020.1828816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The strains of actinobacteria are unique as they lie between true fungi and bacteria and several of them were reported as endophytic actinobacteria as they were isolated from the inner regions of various plant parts and will enhance uptake of nutrients and improve defense against pathogens. Literature and scientific communications reported the relationship between the endophytes and plants, most of them concluded the association as commensalism. Remarkably, bioactive compounds from endophytic Streptomyces sp. were confirmed with various applications. A retrospective consolidation on the endophytic Streptomyces sp. and their metabolite application in day to day life is presented here. It was deduced that this group of the organism are a source for a wide range of bioactive compounds including anticancer agents, immune suppressor, plant growth promoters, anti-inflammatory agents, anti-tumor agents, enzymes and antimicrobial substances. These antimicrobial metabolites show broad-spectrum activity and are effective against bacteria and fungi. The mechanism of action of secondary metabolites from endophytes and its positive influence on the host plants are noted as involvement in deterrence, antifeedant activity, toxicity against common pests, and as enhancers for physical mechanisms such as water uptake and sunlight absorption, thus supporting the growth of host plants.
Collapse
Affiliation(s)
- Reshma Ayswaria
- Microboilte Research Development Private Limited, Manipal-Gok Bioincubator, MAHE Advanced Research Center, Manipal, Karnataka, India
| | - Vineeth Vasu
- Microboilte Research Development Private Limited, Manipal-Gok Bioincubator, MAHE Advanced Research Center, Manipal, Karnataka, India
| | | |
Collapse
|
11
|
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in Neurobiology and Pharmacology of GPR12. Front Pharmacol 2020; 11:628. [PMID: 32457622 PMCID: PMC7226366 DOI: 10.3389/fphar.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
GPR12 is a G protein-coupled orphan receptor genetically related to type 1 and type 2 cannabinoid receptors (CB1 and CB2) which are ancient proteins expressed all over the body. Both cannabinoid receptors, but especially CB1, are involved in neurodevelopment and cognitive processes such as learning, memory, brain reward, coordination, etc. GPR12 shares with CB1 that both are mainly expressed into the brain. Regrettably, very little is known about physiology of GPR12. Concerning its pharmacology, GPR12 seems to be endogenously activated by the lysophospholipids sphingosine-1-phosphate (S1P) and sphingosyl-phosphorylcholine (SPC). Exogenously, GPR12 is a target for the phytocannabinoid cannabidiol (CBD). Functionally, GPR12 seems to be related to neurogenesis and neural inflammation, but its relationship with cognitive functions remains to be characterized. Although GPR12 was initially suggested to be a cannabinoid receptor, it does not meet the five criteria proposed in 2010 by the International Union of Basic and Clinical Pharmacology (IUPHAR). In this review, we analyze all the direct available information in PubMed database about expression, function, and pharmacology of this receptor in central nervous system (CNS) trying to provide a broad overview of its current and prospective neurophysiology. Moreover, in this mini-review we highlight the need to produce more relevant data about the functions of GPR12 in CNS. Hence, this work should motivate further research in this field.
Collapse
Affiliation(s)
- Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| |
Collapse
|
12
|
Phi Thi D, Doan Thi Mai H, Cao DD, Vu Thi Q, Nguyen MA, Le Thi HM, Tran DT, Chau VM, Pham VC. Novel 1,3-Benzodioxole From Marine-Derived Actinomycete in East Vietnam Sea. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Analysis of an antimicrobial extract from the culture broth of the marine-derived actinomycete Streptomyces sp. G261 led to the isolation of a new 1,3-benzodioxole derivative (1), together with 10 known compounds 2-11. The actinomycete strain G261 was isolated from sediment, collected at Cu Lao Cham, Quang Nam in Vietnam. The taxonomic identification of the strain G261 was achieved by analysis of 16SrRNA gene sequences. On the basis of morphological and phylogenetic evidence, the actinomycete strain G261 was assigned to the genus Streptomyces. The structures of the isolated compounds were established by their spectral data analysis, including mass spectrometry, 1-dimensional nuclear magnetic resonance (1D-NMR), and 2D-NMR. The structure of 1 was confirmed by comparison of the calculated with experimental13C NMR data. Compound 1 exhibited antimicrobial activity against Enterococcus faecalis and Staphylococcus aureus with minimum inhibitory concentration values of 128 and 256 µg/mL, respectively. Whereas, compound 1 had a weak inhibition when tested against 4 cancer cell lines, KB, LU-1, HepG-2, and MCF-7.
Collapse
Affiliation(s)
- Dao Phi Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Huong Doan Thi Mai
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Duc Danh Cao
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Quyen Vu Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Mai Anh Nguyen
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hong Minh Le Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dang Thach Tran
- Depatment of Applied Science and Technology, University Industry Vinh, Vietnam
| | - Van Minh Chau
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Cuong Pham
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
13
|
Singh K, Dwivedi GR, Sanket AS, Pati S. Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors. Curr Top Med Chem 2019; 19:754-783. [DOI: 10.2174/1568026619666190412095105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
From the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.
Collapse
Affiliation(s)
- Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - A. Swaroop Sanket
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
14
|
Laun AS, Shrader SH, Brown KJ, Song ZH. GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 2019; 40:300-308. [PMID: 29941868 PMCID: PMC6460361 DOI: 10.1038/s41401-018-0031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
Abstract
The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions. Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12. This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer's disease, Parkinson's disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
15
|
Isolation, characterization, and structural elucidation of 4-methoxyacetanilide from marine actinobacteria Streptomyces sp. SCA29 and evaluation of its enzyme inhibitory, antibacterial, and cytotoxic potential. Arch Microbiol 2019; 201:737-746. [DOI: 10.1007/s00203-019-01634-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
16
|
Lin WX, Xie CL, Zhou M, Xia ML, Zhou TT, Chen HF, Yang XW, Yang Q. Chemical constituents from the deep sea-derived Streptomyces xiamenensis MCCC 1A01570 and their effects on RXRα transcriptional regulation. Nat Prod Res 2018; 34:1461-1464. [DOI: 10.1080/14786419.2018.1508148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Xiang Lin
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Mi Zhou
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Man-Li Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Ting-Ting Zhou
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Hai-Feng Chen
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Quan Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
17
|
Morales P, Isawi I, Reggio PH. Towards a better understanding of the cannabinoid-related orphan receptors GPR3, GPR6, and GPR12. Drug Metab Rev 2018; 50:74-93. [PMID: 29390908 DOI: 10.1080/03602532.2018.1428616] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GPR3, GPR6, and GPR12 are three orphan receptors that belong to the Class A family of G-protein-coupled receptors (GPCRs). These GPCRs share over 60% of sequence similarity among them. Because of their close phylogenetic relationship, GPR3, GPR6, and GPR12 share a high percentage of homology with other lipid receptors such as the lysophospholipid and the cannabinoid receptors. On the basis of sequence similarities at key structural motifs, these orphan receptors have been related to the cannabinoid family. However, further experimental data are required to confirm this association. GPR3, GPR6, and GPR12 are predominantly expressed in mammalian brain. Their high constitutive activation of adenylyl cyclase triggers increases in cAMP levels similar in amplitude to fully activated GPCRs. This feature defines their physiological role under certain pathological conditions. In this review, we aim to summarize the knowledge attained so far on the understanding of these receptors. Expression patterns, pharmacology, physiopathological relevance, and molecules targeting GPR3, GPR6, and GPR12 will be analyzed herein. Interestingly, certain cannabinoid ligands have been reported to modulate these orphan receptors. The current debate about sphingolipids as putative endogenous ligands will also be addressed. A special focus will be on their potential role in the brain, particularly under neurological conditions such as Parkinson or Alzheimer's disease. Reported physiological roles outside the central nervous system will also be covered. This critical overview may contribute to a further comprehension of the physiopathological role of these orphan GPCRs, hopefully attracting more research towards a future therapeutic exploitation of these promising targets.
Collapse
Affiliation(s)
- Paula Morales
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Israa Isawi
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Patricia H Reggio
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| |
Collapse
|
18
|
Zhou SY, Zou YL, Wang GW, Liao ZH, Chen M. Two new compounds from a marine-derived Streptomyces sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1172-1176. [PMID: 28366016 DOI: 10.1080/10286020.2017.1307189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Two new long-chain unsaturated compounds, (2E, 6E)-10-methoxy-3,7-dimethyl-10-oxodeca-2,6-dienoic acid (1) and (2E, 6E)-3,7,11-trimethyldodeca-2,6-dienedioic acid (2), together with seven known compounds were isolated from a marine-derived Streptomyces sp. Their structures were determined by spectroscopic methods, including 2D NMR techniques. Compounds 1 and 2 were investigated for their antibacterial activities.
Collapse
Affiliation(s)
- Si-Yu Zhou
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), College of Pharmaceutical Sciences, Ministry of Education , Southwest University , Chongqing 400715 , China
| | - Yan-Lin Zou
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), College of Pharmaceutical Sciences, Ministry of Education , Southwest University , Chongqing 400715 , China
| | - Guo-Wei Wang
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), College of Pharmaceutical Sciences, Ministry of Education , Southwest University , Chongqing 400715 , China
| | - Zhi-Hua Liao
- b School of Life Sciences , Southwest University , Chongqing 400715 , China
| | - Min Chen
- a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), College of Pharmaceutical Sciences, Ministry of Education , Southwest University , Chongqing 400715 , China
| |
Collapse
|
19
|
Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017. [DOI: 10.3390/md15070230 pmid: 287539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Niu S, Zhou TT, Xie CL, Zhang GY, Yang XW. Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017; 15:md15070230. [PMID: 28753937 PMCID: PMC5532672 DOI: 10.3390/md15070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022] Open
Abstract
A novel indole, microindolinone A (1), was isolated from a deep-sea-derived actinomycete Microbacterium sp. MCCC 1A11207, together with 18 known compounds (2-19). By detailed analysis of the ¹H, 13C, HSQC, COSY, HMBC, high resolution electron spray ionization mass spectrum (HRESIMS), and circular dichroism (CD) data, the absolute configuration of 1 was elucidated as 5R-hydroxy-4,5,6,7-tetrahydroindole-4-one. It is noteworthy that 1 is the second example of a saturated indole isolated from nature.
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Ting-Ting Zhou
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Gai-Yun Zhang
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
21
|
Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 2017; 64:261-270. [PMID: 28107573 DOI: 10.1111/lam.12718] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
The endophytic actinomycetes constitute one of the fascinating group of microorganisms associated with a wide range of plant species. The diversity of actinomycetes in plants and their tissue parts is a matter of debate as no consensus are derived between individual studies. Nevertheless, their diversity correlates with the occurrence in plant species harboured in unique regions of biologically diverse areas called "hot spots." Recent advances in the isolation techniques have facilitated the isolation of rare taxa from these environments. The biosynthetic ability of the endophytic actinomycetes has proven beyond doubt that these organisms have the potential to synthesize an array of compounds with novelty in structure and bioactivity and as a result are preferred in the natural product screening programs. In the years to come, the scientific world may await to discover many more novel actinomycete taxa with metabolic diversity and applications in therapeutics. SIGNIFICANCE AND IMPACT OF THE STUDY "Endophytes" - the microbes residing in the living tissues of plants are virtually omnipresent. Actinomycete endophytes are diverse in distribution within plant tissues, especially in the roots as they have a close association with the rhizhosphere. An introspection into diversity studies necessitates careful sampling, analysis, and isolation data from the biodiverse and nonbiodiverse regions represented by unique environments. The key to the recovery of novel species and their bioprospection lies in these regions.
Collapse
Affiliation(s)
- M S Nalini
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - H S Prakash
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| |
Collapse
|
22
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
23
|
Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie van Leeuwenhoek 2015; 108:267-89. [PMID: 26093915 PMCID: PMC4491368 DOI: 10.1007/s10482-015-0502-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.
Collapse
Affiliation(s)
- Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, 87100, Torun, Poland,
| | | | | | | | | | | |
Collapse
|
24
|
Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12) mutant mice. PLoS One 2012; 7:e42395. [PMID: 22879962 PMCID: PMC3413656 DOI: 10.1371/journal.pone.0042395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background G-protein coupled receptors (GPR) bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. Methodology/Principal Findings Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests) were affected by the Gpr12 gene mutation. Conclusions/Significance Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.
Collapse
|
25
|
Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 2010; 89:457-73. [DOI: 10.1007/s00253-010-2923-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 01/23/2023]
|
26
|
Diketopiperazines from two strains of South China Sea sponge-associated microorganisms. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|