1
|
Albini A, Di Paola L, Mei G, Baci D, Fusco N, Corso G, Noonan D. Inflammation and cancer cell survival: TRAF2 as a key player. Cell Death Dis 2025; 16:292. [PMID: 40229245 PMCID: PMC11997178 DOI: 10.1038/s41419-025-07609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
TNF receptor-associated factor 2 (TRAF2) plays a crucial role in both physiological and pathological processes. It takes part in the regulation of cell survival and death, tissue regeneration, development, endoplasmic reticulum stress response, autophagy, homeostasis of the epithelial barrier and regulation of adaptive and innate immunity. Initially identified for its interaction with TNF receptor 2 (TNFR2), TRAF2 contains a TRAF domain that enables homo- and hetero-oligomerization, allowing it to interact with multiple receptors and signaling molecules. While best known for mediating TNFR1 and TNFR2 signaling, TRAF2 also modulates other receptor pathways, including MAPK, NF-κB, and Wnt/β-catenin cascades. By regulating NF-κB-inducing kinase (NIK), TRAF2 is a key activator of the alternative NF-κB pathway, linking it to inflammatory diseases, immune dysfunction, and tumorigenesis. In the innate immune system, TRAF2 influences macrophage differentiation, activation, and survival and stimulates natural killer cell cytotoxicity. In the adaptive immune system, it represses effector B- and T-cell activity while sustaining regulatory T-cell function, thus promoting immune suppression. The lack of fine-tuning of TRAF2 activity leads to excessive NF-kB activation, driving chronic inflammation and autoimmunity. Although TRAF2 can act as a tumor suppressor, it is predominantly described as a tumor promoter, as its expression has been correlated with increased metastatic potential and poorer prognosis in several types of cancer. Targeting TRAF2 or TRAF2-dependent signaling pathways might represent a promising anti-cancer therapeutic strategy.
Collapse
Grants
- The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022, grant 2022PJKF88 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- "Umberto Veronesi" Foundation project: "Massive CDH1 genetic screening in the so-called hereditary breast-gastric cancer syndrome". The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Nicola Fusco
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Douglas Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
2
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
3
|
Samaei SS, Daryab M, Gholami S, Rezaee A, Fatehi N, Roshannia R, Hashemi S, Javani N, Rahmanian P, Amani-Beni R, Zandieh MA, Nabavi N, Rashidi M, Malgard N, Hashemi M, Taheriazam A. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl Oncol 2024; 45:101975. [PMID: 38692195 PMCID: PMC11070928 DOI: 10.1016/j.tranon.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, mainly occurring in Asian countries with an increased incidence rate globally. Currently, several kinds of therapies have been deployed for HCC therapy including surgical resection, chemotherapy, radiotherapy and immunotherapy. However, this tumor is still incurable, requiring novel strategies for its treatment. The nanomedicine has provided the new insights regarding the treatment of cancer that liposomes as lipid-based nanoparticles, have been widely applied in cancer therapy due to their biocompaitiblity, high drug loading and ease of synthesis and modification. The current review evaluates the application of liposomes for the HCC therapy. The drugs and genes lack targeting ability into tumor tissues and cells. Therefore, loading drugs or genes on liposomes can increase their accumulation in tumor site for HCC suppression. Moreover, the stimuli-responsive liposomes including pH-, redox- and light-sensitive liposomes are able to deliver drug into tumor microenvironment to improve therapeutic index. Since a number of receptors upregulate on HCC cells, the functionalization of liposomes with lactoferrin and peptides can promote the targeting ability towards HCC cells. Moreover, phototherapy can be induced by liposomes through loading phtoosensitizers to stimulate photothermal- and photodynamic-driven ablation of HCC cells. Overall, the findings are in line with the fact that liposomes are promising nanocarriers for the treatment of HCC.
Collapse
Affiliation(s)
- Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Roshannia
- Faculty of Life Science and Bio-technology, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hashemi
- Faculty of Veterinary Medicine, Department of Clinical Sciences, University of Shahrekord, Shahrekord, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Neda Malgard
- Department of Internal medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Daren L, Dan Y, Jinhong W, Chao L. NIK-mediated reactivation of SIX2 enhanced the CSC-like traits of hepatocellular carcinoma cells through suppressing ubiquitin-proteasome system. ENVIRONMENTAL TOXICOLOGY 2024; 39:583-591. [PMID: 37461228 DOI: 10.1002/tox.23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
The critical roles of NF-κB Inducing Kinase (NIK) in tumor progression have been elucidated in various tumors; however, its effects on hepatocellular carcinoma (HCC) progression are still confusing. Here, we found that NIK level was upregulated in HCC tissues compared to that of normal tissues, and positively correlated with the levels of cancer stem cell (CSC) markers. Then we established HCC cells with NIK-stable knockdown and found that NIK knockdown suppressed the CSC-like traits of HCC cells through in vivo and in vitro experiments. Mechanistically, we revealed that SIX2 protein level, but not its mRNA level, was significantly reduced in HCC cells with NIK knockdown, which was rescued by MG132 treatment. Furthermore, NIK knockdown promoted the ubiquitination level of SIX2 and decreased its protein stability. Moreover, Six2 overexpression partially reversed the inhibition of NIK knockdown on the CSC-like traits of HCC cells. This study identified a novel NIK/SIX2 axis conferring HCC stemness.
Collapse
Affiliation(s)
- Liu Daren
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ye Dan
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wu Jinhong
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Li Chao
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
6
|
Chen Q, Lu X, Zhang X. Noncanonical NF-κB Signaling Pathway in Liver Diseases. J Clin Transl Hepatol 2021; 9:81-89. [PMID: 33604258 PMCID: PMC7868705 DOI: 10.14218/jcth.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The noncanonical NF-κB signaling pathway is an important branch of NF-κB signaling. It is involved in regulating multiple important biological processes, including inflammation and host immune response. A central adaptor protein of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which activates the downstream kinase IKKα to process p100 to p52, thereby forming the RelB/p52 heterodimer to initiate the expression of target genes. Currently, many specific inhibitors and monoclonal antibodies targeting or triggering this pathway are being developed and tested for various diseases, including cancers, autoimmune diseases, and virus infection. Given that aberrant activation of the noncanonical NF-κB pathway is frequently observed in various liver diseases, targeting this pathway may be a promising therapeutic strategy to alleviate liver inflammation. Moreover, activation of this pathway may contribute to the antiviral immune response and promote the clearance of persistent hepatotropic virus infection. Here, we review the role of the noncanonical NF-κB pathway in the occurrence and development of different liver diseases, and discuss the potency and application of modulating the noncanonical NF-κB pathway for treatment of these liver diseases.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
- Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Correspondence to: Xiaoyong Zhang, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China. Tel: +86-20-62787830, E-mail:
| |
Collapse
|
7
|
Fei X, Zhang P, Pan Y, Liu Y. MicroRNA-98-5p Inhibits Tumorigenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting NF-κB-Inducing Kinase. Yonsei Med J 2020; 61:460-470. [PMID: 32469170 PMCID: PMC7256008 DOI: 10.3349/ymj.2020.61.6.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE MicroRNAs play key regulatory roles in the tumorigenesis of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). This study aimed to explore the regulatory effects of microRNA-98-5p (miR-98-5p) on the proliferation, migration, invasion, and apoptosis of HBV-HCC cells, as well as the underlying mechanisms involving nuclear factor-κB-inducing kinase (NIK). MATERIALS AND METHODS The expressions of miR-98-5p and NIK in HBV-HCC tissues and cells, and the level of HBV DNA in HBV-HCC cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of HBV-HCC cells were analyzed by cell counting kit-8, wound healing, transwell, and flow cytometry assay, respectively. The targeting relationship between miR-98-5p and NIK was predicted by StarBase3.0 and verified by dual-luciferase reporter assay. HBV-HCC xenograft tumor model was constructed in mice to observe the tumor growth in vivo. RESULTS The expression of miR-98-5p was declined in HBV-HCC tissues and cells. Overexpression of miR-98-5p markedly reduced the level of HBV DNA; inhibited the proliferation, migration, and invasion; and promoted the apoptosis of HBV-HCC cells. NIK was a target of miR-98-5p. Overexpression of miR-98-5p markedly decreased the protein expression of NIK in MHCC97H-HBV cells. NIK reversed the tumor-suppressing effect of miR-98-5p on HBV-HCC cells. Furthermore, overexpression of miR-98-5p significantly inhibited the xenograft tumor growth and decreased the expression of NIK in mice. CONCLUSION MiR-98-5p inhibits the secretion of HBV, proliferation, migration, and invasion of HBV-HCC cells by targeting NIK.
Collapse
Affiliation(s)
- Xiukun Fei
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Peipei Zhang
- Department of Liver Disease, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, China
| | - Yu Pan
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China.
| |
Collapse
|
8
|
|
9
|
Shu Z, He W, Shahen M, Guo Z, Shu J, Wu T, Bian X, Shar AH, Farag MR, Alagawany M, Liu C. Clarifying of the potential mechanism of Sinisan formula for treatment of chronic hepatitis by systems pharmacology method. Biomed Pharmacother 2018; 100:532-550. [PMID: 29482047 DOI: 10.1016/j.biopha.2018.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic hepatitis is a general designation class of diseases, which results in different degrees of liver necrosis and inflammatory reaction, followed by liver fibrosis, may eventually develop into cirrhosis. However, the molecular pathogenesis of chronic hepatitis is too complex to elucidate. Herbal medicines, featured with multiple targets and compounds, have long displayed therapeutic effect in treating chronic hepatitis, though their molecular mechanisms of contribution remain indistinct. This research utilized the network pharmacology to confirm the molecular pathogenesis of chronic hepatitis through providing a comprehensive analysis of active chemicals, drug targets and pathways' interaction of Sinisan formula for treating chronic hepatitis. The outcomes showed that 80 active ingredients of Sinisan formula interacting with 91 therapeutic proteins were authenticated. Sinisan formula potentially participates in immune modulation, anti-inflammatory and antiviral activities, even has regulating effects on lipid metabolism. These mechanisms directly or indirectly are involved in curing chronic hepatitis by an interaction way. The network pharmacology based analysis demonstrated that Sinisan has multi-scale curative activity in regulating chronic hepatitis related biological processes, which provides a new potential way for modern medicine in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Zhiming Shu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Wang He
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Mohamed Shahen
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China; Zoology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| | - Zihu Guo
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Jia Shu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Tiantian Wu
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Xiaoyu Bian
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Akhtar Hussain Shar
- College of Life Science, Northwest A&F University, Shaanxi Yangling, 712100, China
| | - Mayada Ragab Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Shaanxi Yangling, 712100, China.
| |
Collapse
|
10
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2016. [PMID: 26668505 DOI: 10.3748/wjg.v21.i45.1281426668505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
Affiliation(s)
- Yun Shi
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Si-Ye Wang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wei Wu
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yin Cai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
11
|
Sui CJ, Xu M, Li WQ, Yang JM, Yan HZ, Liu HM, Xia CY, Yu HY. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression. Oncol Lett 2016; 12:4054-4060. [PMID: 27895771 PMCID: PMC5104234 DOI: 10.3892/ol.2016.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/05/2015] [Indexed: 11/10/2022] Open
Abstract
Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Cheng-Jun Sui
- Department of Special Medical Care Unit I and Liver Transplantation, The Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Miao Xu
- Department of Geratology, Changhai Hospital, Shanghai 200438, P.R. China
| | - Wei-Qing Li
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jia-Mei Yang
- Department of Special Medical Care Unit I and Liver Transplantation, The Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Hong-Zhu Yan
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hui-Min Liu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun-Yan Xia
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong-Yu Yu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
- Correspondence to: Dr Hong-Yu Yu, Department of Pathology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R. China, E-mail:
| |
Collapse
|
12
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2015; 21:12814-12821. [PMID: 26668505 PMCID: PMC4671036 DOI: 10.3748/wjg.v21.i45.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/04/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNAi Therapeutics
- Time Factors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transcription, Genetic
- Transfection
Collapse
|
13
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
14
|
Zhang Y, Lin A, Zhang C, Tian Z, Zhang J. Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother 2014; 63:357-67. [PMID: 24452201 PMCID: PMC11029435 DOI: 10.1007/s00262-014-1518-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/05/2014] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) expressed on cancer cells are closely associated with tumor development. In this study, we investigated the biological functions of the TLR9 ligand, CpG oligodeoxynucleotide (CpG ODN), on TLR9 expressed in the cytoplasm of hepatocellular carcinoma (HCC) cells. In vitro, human HCC cell lines were transfected with phosphorothioate-modified oligodeoxynucleotides TLR9 agonist OND M362 and its negative control ODN M362 ctrl, which inhibited the proliferation of HCC cells by inducing apoptosis without altering the cell cycle. Interestingly, ODN M362 and ODN M362 Ctrl displayed a similar proapoptotic effect on HCC, possibly related to phosphorothioate modification of the structure of CpG ODN. Although both of them resulted in the upregulation of the TLR9 receptor, their effect on HCC apoptosis was independent of TLR9. They also upregulated inflammatory cytokines, but did not activate the NF-κB signaling pathway. Finally, the activities of ODN M362 and ODN M362 Ctrl were demonstrated in nude mice inoculated with HCC cells. These findings suggest that the phosphorothioate-modified TLR9 agonist ODN M362, and its control, elicit antitumor activity in HCC cells and may serve as a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Yuyi Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Ang Lin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Zhigang Tian
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| |
Collapse
|
15
|
The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem 2014; 390:271-80. [PMID: 24510323 PMCID: PMC3972434 DOI: 10.1007/s11010-014-1978-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
High mobility group protein box1 (HMGB1) and its receptor—receptor for advanced glycation end products (RAGE) are pivotal factors in the development and progression of many types of tumor, but the role of HMGB1-RAGE axis in hepatocellular carcinoma (HCC) especially its effects on metastasis and recurrence remains obscure. Here, we report the role of HMGB1-RAGE axis in the biological behaviors of HCC cell lines and the underlying molecular mechanism. We show that the expressions of HMGB1, RAGE, and extracellular HMGB1 increase consistently according to cell metastasis potentials, while the concentration of soluble form of RAGE (sRAGE) is inversely related to metastasis potential of HCC cells. Furthermore, our data show that rhHMGB1 promotes cellular proliferation, migration, and invasion, and increases the level of nuclear factor kappa B (NF-κB), while administrations of HMGB1-siRNA, RAGE-siRNA, anti-HMGB1 neutralizing antibody, anti-RAGE neutralizing antibody, and sRAGE inhibit cellular proliferation, migration, and invasion. Moreover, we also demonstrate that the expression of NF-кB is inhibited by knockdown of HMGB1 or RAGE. Collectively, these data demonstrate that HMGB1 activates RAGE signaling pathways and induces NF-кB activation to promote cellular proliferation, invasion, and metastasis, in HCC cell lines. Taken together, HMGB1-RAGE axis may become a potential target in HCC therapy.
Collapse
|
16
|
Dorasamy S, Narainpersad N, Singh M, Ariatti M. Novel targeted liposomes deliver sirna to hepatocellular carcinoma cells in vitro. Chem Biol Drug Des 2012; 80:647-56. [PMID: 22783887 DOI: 10.1111/j.1747-0285.2012.01446.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liposomes form a major class of non-viral vectors for short interfering RNA delivery, however tissue and cell-specific targeting are additional requirements in the design of short interfering RNA delivery systems with a therapeutic potential. Selective delivery of liposomes to hepatocytes may be achieved by directing complexes to the asialoglycoprotein receptor, which is expressed on hepatocytes, and which displays high affinity for the β-d-galactopyranosyl moiety. We aimed to show that the d-galactopyranosyl ring in direct β-glycosidic link to cholesterol, when formulated into liposomes with 3β[N-(N',N'-dimethylaminopropane) carbamoyl] cholesterol (Chol-T) or its quaternary trimethylammonium analogue (Chol-Q), may promote targeted delivery of cytotoxic short interfering RNA to the human hepatoma cell line HepG2 via the asialoglycoprotein receptor. Liposome-short interfering RNA interactions were characterized by electron microscopy, dye displacement, gel retardation and nuclease assays. Stable short interfering RNA-protective lipoplexes were formed at N/P ratios in the range 5:1-7:1. Targeted lipoplex 4 achieved high transfection efficiencies at 50 nm short interfering RNA (70%) and <10% in a competition assay, whilst untargeted complexes reached low levels at the same concentration (<25%). Transfection efficiencies of all lipoplexes in the asialoglycoprotein receptor-negative cell line HEK293 under the same conditions were low. Lipoplexes containing cholesteryl-β-d-galactopyranoside may therefore form the basis for the development of useful hepatotropic short interfering RNA delivery vectors.
Collapse
Affiliation(s)
- Shantal Dorasamy
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Westville campus, P. Bag X54001, Durban 4000, South Africa
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Hun Soon Jung
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, Korea
| | | |
Collapse
|
18
|
Kang SS, Cho HA, Kim JS. Biodistribution and improved anticancer effect of NIK-siRNA in combination with 5-FU for hepatocellular carcinoma. Arch Pharm Res 2011; 34:79-86. [PMID: 21468918 DOI: 10.1007/s12272-011-0109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 10/18/2022]
Abstract
Increase of NF-κB inducing kinase (NIK) is known to promote the proliferation of the hepatitis B virus-derived hepatocellular carcinoma (HCC) cells. Previously, we have reported that NIK-specific siRNA in cationic liposomes was shown to suppress the expression of NIK and the proliferation of HCC cells (Cho et al., 2009). More improved suppression of NIK, followed by the improved antiproliferative effect on Hep3B cells, was achieved when 5-FU was co-treated with siRNA. Furthermore, biodistribution study after intravenous injection of siRNA into Hep3B-bearing Balb/c nude mice revealed that siRNA was highly accumulated in liver, followed by tumor, lung, spleen, kidney and heart. When encapsulated in cationic liposomes, larger amount of siRNA was found in tumor owing to the protection of siRNA from enzymatic degradation and enhanced permeability by liposome, suggesting a possible therapeutic modality of siRNA in liver-targeting cationic liposomal formulation for the treatment of hepatitis B virus-derived HCC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Combined Modality Therapy
- Fluorouracil/administration & dosage
- Fluorouracil/pharmacology
- Hepatitis B/complications
- Injections, Intravenous
- Liposomes
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Permeability
- Protein Serine-Threonine Kinases/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/pharmacokinetics
- Tissue Distribution
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Sung Soo Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | | | | |
Collapse
|
19
|
Shao SJ, Yao DF, Shen JJ, Wu W, Yao NH. Intervention of NF-κB activation inhibits the growth of human hepatocellular carcinoma HepG2 cells. Shijie Huaren Xiaohua Zazhi 2010; 18:2296-2301. [DOI: 10.11569/wcjd.v18.i22.2296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of intervention of nuclear factor-κB (NF-κB) activation with tumor necrosis factor-α (TNF-α) monoclonal antibody (TNF-α mab) on the proliferation of human hepatocellular carcinoma (HCC) HepG2 cells.
METHODS: HepG2 cells were cultured in vitro and incubated with TNF-α mab. The changes in cell cycle and apoptosis were detected by flow cytometry (FCM) and annexin-V/PI double staining assay, respectively. The expression of NF-κB and TNF-α in human liver cancer, tumor-adjacent liver tissue, and HepG2 cells were quantitatively analyzed by enzyme-linked immunosorbent assay (ELISA).
RESULTS: The expression level of NF-κB in human HCC was higher than that in tumor-adjacent liver tissue (P < 0.01). The percentage of apoptotic cells in HepG2 cells treated with TNF-α mab (5 mg/L) was higher than that in untreated HepG2 cells (21.45% ± 4.07% vs 5.63% ± 0.93%, q = 10.07, P < 0.01). The percentage of cells in G0/G1 phase was significantly higher in HepG2 cells treated with TNF-α mab than in untreated HepG2 cells (q = 10.98, P < 0.01) though no significant difference was noted in the percentage of cells in S phase between the two groups of cells. The level of NF-κB in HepG2 cells treated with TNF-α mab was lower than that in untreated HepG2 cells [59.00 ng/mg ± 1.02 ng/mg nuclear protein (NP) vs 73.88 ng/mg ± 7.41 ng/mg NP, q = 18.92, P < 0.01]. Increased NF-κB level is correlated with decreased TNF-α level in HepG2 cells treated with TNF-α mab (r = 0.89, P < 0.01). The inhibitory effect of TNF-α mab on TNF-α level is dose-dependent (P < 0.01).
CONCLUSION: Intervention of NF-κB activation by TNF-α mab inhibits the proliferation of HepG2 cells by inducing apoptosis and blocking the cells in G0/G1 phase.
Collapse
|
20
|
Hossain S, Stanislaus A, Chua MJ, Tada S, Tagawa YI, Chowdhury EH, Akaike T. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J Control Release 2010; 147:101-8. [PMID: 20620182 DOI: 10.1016/j.jconrel.2010.06.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 12/19/2022]
Abstract
Gene therapy through intracellular delivery of a functional gene or a gene-silencing element is a promising approach to treat critical diseases. Elucidation of the genetic basis of human diseases with complete sequencing of human genome revealed many vital genes as possible targets in gene therapy programs. RNA interference (RNAi), a powerful tool in functional genomics to selectively silence messenger RNA (mRNA) expression, can be harnessed to rapidly develop novel drugs against any disease target. The ability of synthetic small interfering RNA (siRNA) to effectively silence genes in vitro and in vivo, has made them particularly well suited as a drug therapeutic. However, since naked siRNA is unable to passively diffuse through cellular membranes, delivery of siRNA remains the major hurdle to fully exploit the potential of siRNA technology. Here pH-sensitive carbonate apatite has been developed to efficiently deliver siRNA into the mammalian cells by virtue of its high affinity interactions with the siRNA and the desirable size of the resulting siRNA/apatite complex for effective cellular endocytosis. Moreover, following internalization by cells, siRNA was found to be escaped from the endosomes in a time-dependent manner and finally, more efficiently silenced reporter genes at a low dose than commercially available lipofectamine. Knockdown of cyclin B1 gene with only 10nM of siRNA delivered by carbonate apatite resulted in the significant death of cancer cells, suggesting that the new method of siRNA delivery is highly promising for pre-clinical and clinical cancer therapy.
Collapse
Affiliation(s)
- Sharif Hossain
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Cuestas ML, Mathet VL, Oubiña JR, Sosnik A. Drug delivery systems and liver targeting for the improved pharmacotherapy of the hepatitis B virus (HBV) infection. Pharm Res 2010; 27:1184-202. [PMID: 20333454 DOI: 10.1007/s11095-010-0112-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/01/2010] [Indexed: 12/17/2022]
Abstract
In spite of the progress made in vaccine and antiviral therapy development, hepatitis B virus (HBV) infection is still the most common cause of liver cirrhosis and hepatocellular carcinoma, with more than 400 million people chronically infected worldwide. Antiviral therapy with nucleos(t)ide analogues and/or immunomodulating peptides is the only option to control and prevent the progression of the disease in chronic hepatitis B (CHB)-infected patients. So far, the current antiviral monotherapy remains unsatisfactory because of the low efficacy and the development of drug resistance mutants. Moreover, viral rebound is frequently observed following therapy cessation, since covalent closed circular DNA (cccDNA) is not removed from hepatocytes by antiviral therapy. First, this review describes the current pharmacotherapy for the management of CHB and the new drug candidates being investigated. Then, the challenges in the development of drug delivery systems for the targeting of antiviral drugs to the liver parenchyma are discussed. Finally, perspectives in the design of a more efficient pharmacotherapy to eradicate the virus from the host are addressed.
Collapse
Affiliation(s)
- María L Cuestas
- Centro para el Estudio de Hepatitis Virales, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 11 (1121), Buenos Aires, Argentina
| | | | | | | |
Collapse
|