1
|
Jiang H, Zheng B, Hu G, Kuang L, Zhou T, Li S, Chen X, Li C, Zhang D, Zhang J, Yang Z, He J, Jin H. Spatially resolved metabolomics visualizes heterogeneous distribution of metabolites in lung tissue and the anti-pulmonary fibrosis effect of Prismatomeris connate extract. J Pharm Anal 2024; 14:100971. [PMID: 39381647 PMCID: PMC11459407 DOI: 10.1016/j.jpha.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 10/10/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treatment of PF. Hence, there is an urgent need for developing novel drugs to address such diseases. Our study found for the first time that a natural source of Prismatomeris connata Y. Z. Ruan (Huang Gen, HG) ethyl acetate extract (HG-2) had a significant anti-PF effect by inhibiting the expression of the transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/Smad) pathway. Network pharmacological analysis suggested that HG-2 had effects on tyrosine kinase phosphorylation, cellular response to reactive oxygen species, and extracellular matrix (ECM) disassembly. Moreover, mass spectrometry imaging (MSI) was used to visualize the heterogeneous distribution of endogenous metabolites in lung tissue and reveal the anti-PF metabolic mechanism of HG-2, which was related to arginine biosynthesis and alanine, asparate and glutamate metabolism, the downregulation of arachidonic acid metabolism, and the upregulation of glycerophospholipid metabolism. In conclusion, we elaborated on the relationship between metabolite distribution and the progression of PF, constructed the regulatory metabolic network of HG-2, and discovered the multi-target therapeutic effect of HG-2, which might be conducive to the development of new drugs for PF.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Bowen Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guang Hu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tianyu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Sizheng Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning, 530201, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Key Laboratory for Safety Research and Evaluation of Innovative Drug, National Medical Products Administration, Beijing, 102206, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Key Laboratory for Safety Research and Evaluation of Innovative Drug, National Medical Products Administration, Beijing, 102206, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China
| |
Collapse
|
2
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
3
|
Li Y, Guo F, Chen T, Zhang L, Qin Y. Anthraquinone derivative C10 inhibits proliferation and cell cycle progression in colon cancer cells via the Jak2/Stat3 signaling pathway. Toxicol Appl Pharmacol 2021; 418:115481. [PMID: 33722666 DOI: 10.1016/j.taap.2021.115481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Since its discovery, anthraquinone has become very valuable as a lead compound in the development of anti-cancer drugs. Previously, we designed and synthesized a new type of amide anthraquinone derivative (1-nitro-2-acylanthraquinone glycine, C10) with good activity against colon cancer. However, its effect and the underlying mechanism are unclear. In this study, C10 significantly inhibited the proliferation of HCT116 and HT29 colon cancer cells by blocking the cell cycle at the G2/M phase. C10 also plays a role in cell cycle arrest by reducing the protein and gene expression levels of cyclin B1 and its downstream signaling molecule cyclin-dependent kinase (CDK1). In addition, molecular docking studies showed that C10 has high affinity for Jak2, the first target in the cell cycle-related Jak2/Stat3 signaling pathway. Furthermore, C10 downregulated the expression of Jak2/Stat3 signaling pathway-related signaling molecules proteins and genes, and up-regulated the expression of PIAS-3, the upstream signaling molecule of Stat3, thereby down-regulating Stat3 phosphorylation. C10 reversed the expression of Jak2/Stat3 signaling pathway-related molecules activated by IL-6. Overall, our results indicate for the first time that C10 induces cell cycle arrest and inhibits cell proliferation by inhibiting the Jak2/Stat3 signaling pathway. This study provides new insights into the potential role of Jak2/Stat3 in the regulating cell cycle-related signaling pathways that mediate the inhibitory effects of C10 on colon cancer cell proliferation.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Fang Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Tinggui Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Liwei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yu Qin
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L, Wang Z, Su Q, Feng L, Liu Y, Zhou Y. Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules 2020; 25:molecules25071672. [PMID: 32260423 PMCID: PMC7180728 DOI: 10.3390/molecules25071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.
Collapse
|
5
|
Ghassami E, Varshosaz J, Minaiyan M, Nasirikenari M, Hoseini SM. Biodistribution, Safety and Organ Toxicity of Docetaxel-Loaded in HER-2 Aptamer Conjugated Ecoflex® Nanoparticles in a Mouse Xenograft Model of Ovarian Cancer. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:49-58. [PMID: 30488805 DOI: 10.2174/1872210513666181128162403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Docetaxel is a notably efficient anticancer drug administered for several types of malignancies including ovarian cancer. However, various side effects caused either by the nonspecific distribution of the active ingredient or by high contents of Tween 80 and ethanol in the currently marketed formulations, could even deprive the patients of the treatment. OBJECTIVES In the current study, a novel targeted delivery system composed of Ecoflex® polymeric nanoparticles loaded with docetaxel and equipped with HER-2 specific aptamer molecules was evaluated regarding blood and tissue toxicity, and biodistribution. METHOD The tumor-bearing nude mice, achieved by subcutaneous injection of SKOV-3 cells, were divided into four groups treated with normal saline, Taxotere®, targeted docetaxel nanoparticles, and non-targeted docetaxel nanoparticles. Few patents were alos cied in the article. RESULTS According to the results of hematologic evaluations, almost all hematologic parameters were in normal range with no significant difference among the four groups. Histopathological studies revealed that treatment with targeted nanoparticles caused a remarkable reduction in mitosis in tumor sections and overall reduced organ toxicity compared with Taxotere®. The only exception was spleen in which more damage was caused by the nanoparticles. The results of the biodistribution study were also in accordance with pathological assessments, with significantly lower drug concentration in non-tumor tissues, except for spleen, when targeted nanoparticles were used compared with Taxotere®. CONCLUSION These results could evidence the efficiency of the targeted delivery system in concentrating the drug cargo mostly in its site of action leading to the elimination of its adverse effects caused by exposure of other tissues to the cytotoxic agent.
Collapse
Affiliation(s)
- Erfaneh Ghassami
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed M Hoseini
- Department of Pathobiology, Islamic Azad University, Babol, Iran
| |
Collapse
|
6
|
Feng S, Wang Z, Zhang M, Zhu X, Ren Z. HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, induces apoptosis in human non-small cell lung cancer cells. Biomed Pharmacother 2018; 100:124-131. [PMID: 29427923 DOI: 10.1016/j.biopha.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023] Open
Abstract
HG30, a tetrahydroanthraquinone compound isolated from the roots of Prismatomeris connate, was previously shown to inhibit the proliferation of A549 cells. The aim of this study was to evaluate the antitumor activity of HG30 in two non-small cell lung cancer cell lines, A549 and H1299, and to explore potential underlying mechanisms. In cell viability and colony formation assays, HG30 treatment suppressed the proliferation and number of colonies formed by A549 and H1299 cells. Western blot analysis further demonstrated that induction of apoptosis by HG30 in A549 and H1299 cells involves both caspase-dependent apoptosis pathways, including mitochondria- and death receptor-mediated pathways, and an apoptosis-inducing factor (AIF) -associated caspase-independent apoptosis pathway. Specifically, HG30 treatment affected Bcl-2 family proteins and inhibitor of apoptosis protein (IAP) family proteins by down-regulating of Mcl-1, survivin and XIAP and up-regulation of Bid, and Bim.
Collapse
Affiliation(s)
- Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Zhenzhen Wang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China; College of Chemistry and Pharmaceutical Sciences, Northwest A & F University, Yangling 712100, China.
| | - Min Zhang
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| | - Xiaohui Zhu
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, China.
| | - Zhanjun Ren
- College of Animal Science, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
7
|
Peng Z, Fang G, Peng F, Pan Z, Su Z, Tian W, Li D, Hou H. Effects of Rubiadin isolated from Prismatomeris connata on anti-hepatitis B virus activity in vitro. Phytother Res 2017; 31:1962-1970. [PMID: 29044868 DOI: 10.1002/ptr.5945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
Prismatomeris connata was a kind of Rubiaceae plant for treatment of hepatitis, hepatic fibrosis and silicosis. Whereas, the effective components of Prismatomeris connata remains unexplored. The aim of this study was to investigate the inhibitory effects and mechanisms of Rubiadin isolated from Prismatomeris connata against HBV using HepG2.2.15 cells. The levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core antigen (HBcAg) in the supernatants or cytoplasm were examined using by enzyme-linked immunosorbent assay. HBV DNA was qualified q-PCR. Rubiadin was isolated by silica gel column. The structure of the compound was elucidated by HPLC, FT-IR, 1 H-NMR, 13 C-NMR and identified as 1,3-Dihydroxy-2-methyl-9, 10-anthraquinone. Rubiadin significantly decreased HBeAg,HBcAg secretion level and inhibit HBV DNA replication. Rubiadin inhibits the proliferation of the cells and HBx protein expression in a dose-dependent manner. The intracellular calcium concentration was significantly reduced. These results demonstrated that Rubiadin could inhibit HepG2.2.15 cells proliferation, reduce the level of HBx expression, and intracellular free calcium, which might become a novel anti-HBV drug candidate.
Collapse
Affiliation(s)
- Zheng Peng
- Guangxi Medical University, Nanning, 530021, China
| | - Gang Fang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fenghui Peng
- Guangxi Medical University, Nanning, 530021, China
| | - Zhiyu Pan
- Guangxi Medical University, Nanning, 530021, China
| | - Zhengying Su
- Guangxi Medical University, Nanning, 530021, China
| | - Wei Tian
- Guangxi Medical University, Nanning, 530021, China
| | - Danrong Li
- Guangxi Medical University, Nanning, 530021, China
| | - Huaxin Hou
- Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
8
|
Wang CX, Zhao SN, Feng SX, Zhang XP, Chen T. Two New Anthraquinones from the Roots of Prismatomeris connata. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new anthraquinones, 4-hydroxy-1,2,3-trimethoxy-7-hydroxymethylanthracene-9,10-dione (1) and 1,2,3-trimethoxy-7-hydroxymethylanthracene-9,10-dione (2), were isolated from the roots of Prismatomeris connata, a Chinese medicinal herb. Their structures were elucidated by spectroscopic analysis. Compound 1 exhibited cytotoxicity against a panel of H1229, HTB179, A549 and H520 lung tumor cell lines with IC50 values ranging from 12.3 to 20 μM.
Collapse
Affiliation(s)
- Chun-Xiang Wang
- School of Life Sciences, Anhui Normal University, Wuhu 241000, P. R. China
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, P. R. China
| | - Sa-Na Zhao
- School of Life Sciences, Anhui Normal University, Wuhu 241000, P. R. China
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, P. R. China
| | - Shi-Xiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, P. R. China
| | - Xiao-Ping Zhang
- School of Life Sciences, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tao Chen
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, P. R. China
| |
Collapse
|
9
|
Seven New Tetrahydroanthraquinones from the Root of Prismatomeris connata and Their Cytotoxicity against Lung Tumor Cell Growth. Molecules 2015; 20:22565-77. [PMID: 26694340 PMCID: PMC6331813 DOI: 10.3390/molecules201219856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022] Open
Abstract
The root of Prismatomeris connata has been used in China for centuries as the medicinal herb “Huang Gen” (HG), but its phytochemicals or active ingredients are not well understood. In this study, we performed chemical analysis of the ethyl acetate fraction of a HG ethanol extract. We thus isolated seven new tetrahydroanthraquinones, prisconnatanones C–I (compounds 1–7) from the root of P. connata and identified their structures using spectroscopic analyses. Their absolute configurations were established by both modified Mosher’s and Mo2OAc4 methods, and ORD techniques. Their cytotoxicity was tested in a panel of human lung tumor cells (H1229, HTB179, A549 and H520 cell lines). Prisconnatanone I (7) showed the highest activity, with an IC50 value ranging from 2.7 µM to 3.9 µM in the suppression of tumor cell growth, and the others with chelated phenolic hydroxyls exhibited relatively lower activity (IC50: 8–20 µM). In conclusion, these data suggest that some of the natural tetrahydroanthraquinones in HG are bioactive, and hydroxylation at C-1 significantly increases the cytotoxicity of these compounds against lung tumor cell growth.
Collapse
|
10
|
|