1
|
Yamaya M, Kikuchi A, Sugawara M, Nishimura H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respir Investig 2023; 61:270-283. [PMID: 36543714 PMCID: PMC9761392 DOI: 10.1016/j.resinv.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mitsuru Sugawara
- Department of Otolaryngology, Tohoku Kosai Hospital, Sendai 980-0803, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
2
|
Polypharmacology of ambroxol in the treatment of COVID-19. Biosci Rep 2023; 43:232463. [PMID: 36651548 PMCID: PMC9970826 DOI: 10.1042/bsr20221927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still underway. Due to the growing development of severe symptoms, it is necessary to promote effective therapies. Ambroxol [2-amino-3,5-dibromo-N-(trans-4-hydroxycyclohexyl) benzylamine] has long been used as one of the over-the-counter mucolytic agents to treat various respiratory diseases. Therefore, we focused on the mechanism of action of ambroxol in COVID-19 treatment. In vitro and in silico screening revealed that ambroxol may impede cell entry of SARS-CoV-2 by binding to neuropilin-1. Ambroxol could also interact with multiple inflammatory factors and signaling pathways, especially nuclear factor kappa B (NF-κB), to interfere cytokines cascade activated by SARS-CoV-2 internalization. Furthermore, multipathways and proteins, such as the cell cycle and matrix metalloproteinases (MMPs), were identified as significant ambroxol-targeting pathways or molecules in PBMC and lung of severe COVID-19 patients by bioinformatics analysis. Collectively, these results suggested that ambroxol may serve as a promising therapeutic candidate for the treatment of severe SARS-CoV-2 infection.
Collapse
|
3
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
de Azevedo Queiroz ÍO, Machado T, Alves CC, Brito VGB, de Vasconcelos BC, Gomes-Filho JE, Ervolino E, de Oliveira SHP, Duarte MAH. Biological and antimicrobial properties of the association Ambroxol and a water-soluble viscous liquid as a vehicle for a tricalcium silicate-based sealer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:140. [PMID: 34817700 PMCID: PMC8613135 DOI: 10.1007/s10856-021-06604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the antimicrobial and biological properties of Ambroxol associated with glycerin (GLI), propylene glycol (PG), and polyethylene glycol (PEG) as a possible vehicle for an experimental tricalcium silicate sealer, with the intention of developing a new biomaterial. Mouse undifferentiated dental pulp cells (OD-21) were cultured, and the effects of different association on cell proliferation and inflammatory cytokine production were investigated. Antimicrobial adhesion of Enterococcus faecalis to setting sealers at 2 h was evaluated. Polyethylene tubes containing experimental sealers and empty tubes were implanted into dorsal connective tissues of 12 male 3- to 4-months-old Wistar rats (250-280 g). After 7 and 30 days, the tubes were removed and processed for histological and immunohistochemical analyses. ANOVA followed by Bonferroni correction and ANOVA followed by Tukey test was used for parametric data and Kruskal-Wallis followed by Dunn for nonparametric (p < 0.05). Cell proliferation was dose-dependent, since all association were cytotoxic at higher concentrations; however, Ambroxol-PEG showed significantly higher cytotoxicity than other association (p < 0.05). In addition, irrespective of the association, no cytokine production was observed in vitro. Ambroxol-GLI reduced bacterial viability, whereas Ambroxol-PEG increased (p < 0.05). Histological examination showed no significant difference in the inflammatory response (p > 0.05) and mineralization ability in all association. Additionally, IL-1β and TNF-α were upregulated on Ambroxol-PEG in relation to Control at 07 days (p < 0.05). Ambroxol-GLI was the best vehicle for experimental tricalcium silicate sealer, as it promoted an increase in antimicrobial activity without altering the inflammatory response or mineralization ability.
Collapse
Affiliation(s)
- Índia Olinta de Azevedo Queiroz
- Department of Dentistry, Endodontics and Dental Materials, University of São Paulo (USP), Bauru School of Dentistry, Alameda Octávio Pinheiro Brisolla, Bauru, SP, 9-75, Brazil.
| | - Thiago Machado
- Department of Oral and Maxillofacial Surgery and Integrated Clinic, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba, SP, 1193, Brazil
| | - Camila Carneiro Alves
- Department of Endodontics, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Rua José Bonifácio, Araçatuba, SP, 1193, Brazil
| | - Victor Gustavo Balera Brito
- Department of Basic Science, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Rua José Bonifácio, Araçatuba, SP, 1193, Brazil
| | - Bruno Carvalho de Vasconcelos
- Department of Dentistry, School of Dentistry of Sobral, Federal University of Ceará (UFC), Rua Coronel Estanislau Frota, Sobral, CE, 563, Brazil
| | - João Eduardo Gomes-Filho
- Department of Endodontics, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Rua José Bonifácio, Araçatuba, SP, 1193, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Rua José Bonifácio, Araçatuba, SP, 1193, Brazil
| | - Sandra Helena Penha de Oliveira
- Department of Basic Science, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Rua José Bonifácio, Araçatuba, SP, 1193, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, University of São Paulo (USP), Bauru School of Dentistry, Alameda Octávio Pinheiro Brisolla, Bauru, SP, 9-75, Brazil
| |
Collapse
|
5
|
Ambroxol Treatment Suppresses the Proliferation of Chlamydia pneumoniae in Murine Lungs. Microorganisms 2021; 9:microorganisms9040880. [PMID: 33924075 PMCID: PMC8074272 DOI: 10.3390/microorganisms9040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Ambroxol (Ax) is used as a mucolytics in the treatment of respiratory tract infections. Ax, at a general dose for humans, does not alter Chlamydia pneumoniae growth in mice. Therefore, we aimed to investigate the potential anti-chlamydial effect of Ax at a concentration four timed higher than that used in human medicine. Mice were infected with C. pneumoniae and 5-mg/kg Ax was administered orally. The number of recoverable C. pneumoniae inclusion-forming units (IFUs) in Ax-treated mice was significantly lower than that in untreated mice. mRNA expression levels of several cytokines, including interleukin 12 (IL-12), IL-23, IL-17F, interferon gamma (IFN-γ), and surfactant protein (SP)-A, increased in infected mice treated with Ax. The IFN-γ protein expression levels were also significantly higher in infected and Ax-treated mice. Furthermore, the in vitro results suggested that the ERK 1/2 activity was decreased, which is essential for the C. pneumoniae replication. SP-A and SP-D treatments significantly decreased the number of viable C. pneumoniae IFUs and significantly increased the attachment of C. pneumoniae to macrophage cells. Based on our results, a dose of 5 mg/kg of Ax exhibited an anti-chlamydial effect in mice, probably an immunomodulating effect, and may be used as supporting drug in respiratory infections caused by C. pneumoniae.
Collapse
|
6
|
Wu YH, Yeh IJ, Phan NN, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Hsu HP, Wang CY, Lai MD. Gene signatures and potential therapeutic targets of Middle East respiratory syndrome coronavirus (MERS-CoV)-infected human lung adenocarcinoma epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:845-857. [PMID: 34176764 PMCID: PMC7997684 DOI: 10.1016/j.jmii.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 12/23/2022]
Abstract
Background Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. Methods High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein–protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. Results Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. Conclusions The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.
Collapse
Affiliation(s)
- Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
7
|
Yu L, Bhattacharya D, Wang Z, Wang M. Topical administration of ambroxol eye drops augments tear secretion in rabbits. Graefes Arch Clin Exp Ophthalmol 2021; 259:1529-1538. [DOI: 10.1007/s00417-020-05043-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
|
8
|
Li LC, Han YY, Zhang ZH, Zhou WC, Fang HM, Qu J, Kan LD. Chronic Obstructive Pulmonary Disease Treatment and Pharmacist-Led Medication Management. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:111-124. [PMID: 33469264 PMCID: PMC7811374 DOI: 10.2147/dddt.s286315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death across the globe. Its repeated exacerbation will seriously worsen the quality of life, aggravate the patients’ symptoms, and bring a heavy burden on the patients and the society. Understanding the current status of drug therapy and the role of pharmaceutical care is essential for the management of COPD. In addition to the drugs already on the market, recent clinical trials also show that emerging novel drugs for treating COPD are being developed to prevent the symptoms, reduce the frequency of acute exacerbation, and improve the quality of life. Recent progress in new drug research should lead to novel treatment options for COPD patients in future clinical practice. The pharmaceutical care has shown significantly favourable impacts on addressing drug-related problems, supporting its vital role in the management of COPD, especially when there are a wide range of therapeutic agents. This review not only provides an overview of current treatment strategies but also further underlines the importance of new drug development and pharmaceutical care for patients with COPD.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Yong-Yue Han
- School of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Zhi-Hui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, People's Republic of China.,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai 200082, People's Republic of China
| | - Wen-Cheng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, People's Republic of China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, People's Republic of China
| | - Hong-Mei Fang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
9
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
10
|
Walther C, Döring K, Schmidtke M. Comparative in vitro analysis of inhibition of rhinovirus and influenza virus replication by mucoactive secretolytic agents and plant extracts. BMC Complement Med Ther 2020; 20:380. [PMID: 33357221 PMCID: PMC7757078 DOI: 10.1186/s12906-020-03173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
Background Rhinoviruses and influenza viruses cause millions of acute respiratory infections annually. Symptoms of mild acute respiratory infections are commonly treated with over-the-counter products like ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts today. Because the direct antiviral activity of these over-the-counter products has not been studied in a systematic way, the current study aimed to compare their inhibitory effect against rhinovirus and influenza virus replication in an in vitro setting. Methods The cytotoxicity of ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts was analyzed in Madin Darby canine kidney (MDCK) and HeLa Ohio cells. The antiviral effect of these over-the-counter products was compared by analyzing the dose-dependent inhibition (i) of rhinovirus A2- and B14-induced cytopathic effect in HeLa Ohio cells and (ii) of influenza virus A/Hong Kong/68 (subtype H3N2)- and A/Jena/8178/09 (subtype H1N1, pandemic)-induced cytopathic effect in MDCK cells at non-cytotoxic concentrations. To get insights into the mechanism of action of pelargonium extract against influenza virus, we performed time-of-addition assays as well as hemagglutination and neuraminidase inhibition assays. Results N-acetyl cysteine, thyme and pelargonium extract showed no or only marginal cytotoxicity in MDCK and HeLa Ohio cells in the tested concentration range. The 50% cytotoxic concentration of ambroxol and bromhexine was 51.85 and 61.24 μM, respectively. No anti-rhinoviral activity was detected at non-cytotoxic concentrations in this in vitro study setting. Ambroxol, bromhexine, and N-acetyl cysteine inhibited the influenza virus-induced cytopathic effect in MDCK cells no or less than 50%. In contrast, a dose-dependent anti-influenza virus activity of thyme and pelargonium extracts was demonstrated. The time-of addition assays revealed an inhibition of early and late steps of influenza virus replication by pelargonium extract whereas zanamivir acted on late steps only. The proven block of viral neuraminidase activity might explain the inhibition of influenza virus replication when added after viral adsorption. Conclusion The study results indicate a distinct inhibition of influenza A virus replication by thyme and pelargonium extract which might contribute to the beneficial effects of these plant extracts on acute respiratory infections symptoms.
Collapse
Affiliation(s)
- Christin Walther
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Kristin Döring
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Michaela Schmidtke
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.
| |
Collapse
|
11
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
12
|
Olaleye OA, Kaur M, Onyenaka CC. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32995775 DOI: 10.1101/2020.09.13.295691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), enters the host cells through two main pathways, both involving key interactions between viral envelope-anchored spike glycoprotein of the novel coronavirus and the host receptor, angiotensin-converting enzyme 2 (ACE2). To date, SARS-CoV-2 has infected up to 26 million people worldwide; yet, there is no clinically approved drug or vaccine available. Therefore, a rapid and coordinated effort to re-purpose clinically approved drugs that prevent or disrupt these critical entry pathways of SARS-CoV-2 spike glycoprotein interaction with human ACE2, could potentially accelerate the identification and clinical advancement of prophylactic and/or treatment options against COVID-19, thus providing possible countermeasures against viral entry, pathogenesis and survival. Herein, we discovered that Ambroxol hydrochloride (AMB), and its progenitor, Bromhexine hydrochloride (BHH), both clinically approved drugs are potent effective modulators of the key interaction between the receptor binding domain (RBD) of SARS-CoV-2 spike protein and human ACE2. We also found that both compounds inhibited SARS-CoV-2 infection-induced cytopathic effect at micromolar concentrations. Therefore, in addition to the known TMPRSS2 activity of BHH; we report for the first time that the BHH and AMB pharmacophore has the capacity to target and modulate yet another key protein-protein interaction essential for the two known SARS-CoV-2 entry pathways into host cells. Altogether, the potent efficacy, excellent safety and pharmacologic profile of both drugs along with their affordability and availability, makes them promising candidates for drug repurposing as possible prophylactic and/or treatment options against SARS-CoV-2 infection.
Collapse
|
13
|
Barut EN, Engin S, Barut B, Kaya C, Kerimoglu G, Ozel A, Kadioglu M. Uroprotective effect of ambroxol in cyclophosphamide-induced cystitis in mice. Int Urol Nephrol 2019; 51:803-810. [DOI: 10.1007/s11255-019-02128-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
|
14
|
Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold-the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
Affiliation(s)
- Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), 69003 Lyon, France.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Kardos P, Beeh KM, Sent U, Mueck T, Gräter H, Michel MC. Characterization of differential patient profiles and therapeutic responses of pharmacy customers for four ambroxol formulations. BMC Pharmacol Toxicol 2018; 19:40. [PMID: 29973292 PMCID: PMC6030777 DOI: 10.1186/s40360-018-0229-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ambroxol relieves cough symptoms based on its secretagogue, anti-inflammatory, anti-oxidant, anti-bacterial, anti-viral, immunomodulatory and local anesthetic effects. The present study was designed to explore differential patient profiles and efficacy against acute respiratory symptoms of four formulations registered as over-the-counter medicines. Methods Nine hundred sixty-five pharmacy customers purchasing one of four branded ambroxol formulations (extended release capsules, adult syrup, pediatric syrup and soft pastilles) filled a questionnaire including a patient-adapted version of the Bronchitis Severity Scale, several questions on degree of impairment by acute cough, time to onset of symptom relief and duration of treatment. Data on pediatric syrup users were entered by their parents. Based on the exploratory character of the study, no hypothesis-testing statistical analysis was applied. Results Users of the pediatric syrup and the pastilles reported somewhat less severe baseline symptoms. The patient-adapted Bronchitis Severity Scale proved feasible as a self-administered tool. Among BSS items, ambroxol formulations improved chest pain while coughing to the largest and sputum to smallest degree (− 75% vs. -40%). Reported efficacy was comparable among formulations with minor differences in favor of the pediatric syrup. Time to onset of symptom relief was less than 60 min in more than 90% of patients and occurred prior to known systemic tmax. Time to onset was the parameter with the greatest differences between formulations, being reported fastest with pastilles and pediatric syrup and, as expected, slowest with extended release capsules. All ambroxol formulations were well tolerated. Conclusions We conclude that over-the-counter formulations of ambroxol exhibit comparable user profiles and efficacy. Differences in speed of onset of symptom relief may involve not only those in systemic pharmacokinetics but also local anesthetic effects of immediate release formulations. Differences between pediatric and adult syrup may in part reflect reporting bias.
Collapse
Affiliation(s)
- Peter Kardos
- Group Practice, Center for Allergy, Respiratory and Sleep Medicine, Red Cross Maingau Hospital, Frankfurt am Main, Germany
| | | | - Ulrike Sent
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Tobias Mueck
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Heidemarie Gräter
- Medical Affairs Consumer Healthcare, Sanofi-Aventis Deutschland GmbH, Frankfurt-Hoechst, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 55131, Mainz, Germany.
| |
Collapse
|
16
|
Abstract
Fibromyalgia appears to present in subgroups with regard to biological pain induction, with primarily inflammatory, neuropathic/neurodegenerative, sympathetic, oxidative, nitrosative, or muscular factors and/or central sensitization. Recent research has also discussed glial activation or interrupted dopaminergic neurotransmission, as well as increased skin mast cells and mitochondrial dysfunction. Therapy is difficult, and the treatment options used so far mostly just have the potential to address only one of these aspects. As ambroxol addresses all of them in a single substance and furthermore also reduces visceral hypersensitivity, in fibromyalgia existing as irritable bowel syndrome or chronic bladder pain, it should be systematically investigated for this purpose. Encouraged by first clinical observations of two working groups using topical or oral ambroxol for fibromyalgia treatments, the present paper outlines the scientific argument for this approach by looking at each of the aforementioned aspects of this complex disease and summarizes putative modes of action of ambroxol. Nevertheless, at this point the evidence basis for ambroxol is not strong enough for clinical recommendation.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute of Pain Medicine/Pain Practice, Wiesbaden, Germany
| | | |
Collapse
|
17
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
18
|
MAO Z, WANG X, DI X, LIU Y, ZANG Y, MA D, LIU Y, DI X. Quantitative Detection of Ambroxol in Human Plasma Using HPLC-APCI-MS/MS: Application to a Pharmacokinetic Study. ANAL SCI 2017; 33:1099-1103. [DOI: 10.2116/analsci.33.1099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhengsheng MAO
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin WANG
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin DI
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Yangdan LIU
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Yanan ZANG
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Dongke MA
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Youping LIU
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| | - Xin DI
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University
| |
Collapse
|
19
|
Makarova EV, Varvarina GN, Menkov NV, Czapaeva MY, Lazareva ES, Kazatskaya ZA, Novikov VV, Karaulov AV. [Nebulized budesonide in the treatment of exacerbations of chronic obstructive pulmonary disease: Efficacy, safety, and effects on the serum levels of soluble differentiation molecules]. TERAPEVT ARKH 2016; 88:24-31. [PMID: 27030325 DOI: 10.17116/terarkh201688324-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To investigate the efficacy and safety of nebulized budesonide and systemic glucocorticosteroids (GCS) (SGCS) in the treatment of an exacerbation of chronic obstructive pulmonary disease (COPD) and their effects on the serum concentration of soluble leukocyte differentiation antigens. MATERIALS AND METHODS Seventy-eight hospitalized patients with an acute exacerbation of COPD were randomized into two groups: 1) 37 patients took nebulized budesonide 4 mg/day; 2) 41 patients received intravenous prednisolone. The symptoms of COPD, forced expiratory volume in one second (FEV1) and other spirometric indicators, peripheral blood oxygen saturation (SpO2), and adverse events were studied. The serum levels of the soluble adhesion molecules CD50 (sCD50) and CD54 (sCD54) and the lymphocyte activation molecules CD38 (sCD38) and CD25 (sCD25) were investigated by an enzyme immunoassay. RESULTS There was a significant resolution of the symptoms of COPD, FEV1, and SpO2 in both groups after treatment. The incidence of hyperglycemia episodes was lower in the budesonide group than in the sGCS group. GCSs caused a decrease in the serum level of soluble interleukin-2 receptor (sCD25) in both groups. A prednisolone cycle, unlike a budesonide one, was found to reduce the concentrations of sCD54, sCD50, and sCD38. CONCLUSION Nebulized budesonide is an effective and safe alternative to SGCS in treating an exacerbation of COPD. Inhaled GCSs, unlike SGCSs, exhibit anti-inflammatory activity, but exert no immunosuppressive activity.
Collapse
Affiliation(s)
- E V Makarova
- Nizhny Novgorod State Medical Academy, Ministry of Health of Russia, Nizhny Novgorod, Russia
| | - G N Varvarina
- Nizhny Novgorod State Medical Academy, Ministry of Health of Russia, Nizhny Novgorod, Russia
| | - N V Menkov
- Nizhny Novgorod State Medical Academy, Ministry of Health of Russia, Nizhny Novgorod, Russia
| | | | - E S Lazareva
- N.I. Lobachevsky Nizhny Novgorod State University, National Research University, Nizhny Novgorod, Russia
| | - Zh A Kazatskaya
- N.I. Lobachevsky Nizhny Novgorod State University, National Research University, Nizhny Novgorod, Russia
| | - V V Novikov
- N.I. Lobachevsky Nizhny Novgorod State University, National Research University, Nizhny Novgorod, Russia
| | - A V Karaulov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
20
|
Ricciardolo FLM, Sorbello V, Benedetto S, Paleari D. Effect of Ambroxol and Beclomethasone on Lipopolysaccharide-Induced Nitrosative Stress in Bronchial Epithelial Cells. Respiration 2015; 89:572-82. [PMID: 25998443 DOI: 10.1159/000381905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/12/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nitrosative stress is involved in different airway diseases. Lipopolysaccharide (LPS) induces neutrophil-related cytokine release and nitrosative stress in human bronchial epithelial (BEAS-2B) cells alone or with human polymorphonuclear neutrophils (PMNs). Ambroxol protects against oxidative stress, and beclomethasone dipropionate is an anti-inflammatory drug. OBJECTIVES We evaluated the ability of ambroxol and/or beclomethasone dipropionate to inhibit LPS-induced expression/release of RANTES, IL-8, inducible NO synthase (iNOS), myeloperoxidase (MPO) and 3-nitrotyrosine (3-NT: nitrosative stress biomarker) in BEAS-2B ± PMNs stimulated with LPS (1 μg/ml). METHODS The effect of ambroxol and/or beclomethasone dipropionate on IL-8, RANTES and iNOS levels was assessed by Western blot analysis; IL-8, MPO and 3-NT levels were measured by ELISA. Cell viability was assessed by the trypan blue exclusion test. RESULTS In BEAS-2B alone, LPS (at 12 h) increased RANTES/iNOS expression and IL-8 levels (p < 0.001). Ambroxol suppressed LPS-induced RANTES expression and IL-8 release (p < 0.001), whilst inhibiting iNOS expression (p < 0.05). Beclomethasone dipropionate had no effect on RANTES but halved iNOS expression and IL-8 release. Coculture of BEAS-2B with PMNs stimulated IL-8, MPO and 3-NT production (p < 0.001), potentiated by LPS (p < 0.001). Ambroxol and beclomethasone dipropionate inhibited LPS-stimulated IL-8, MPO and 3-NT release (p < 0.05). Ambroxol/beclomethasone dipropionate combination potentiated the inhibition of IL-8 and 3-NT production in BEAS-2B with PMNs (p < 0.05 and p < 0.01, respectively). Ambroxol and/or beclomethasone dipropionate inhibited nitrosative stress and the release of neutrophilic inflammatory products in vitro. CONCLUSION The additive effect of ambroxol and beclomethasone dipropionate on IL-8 and 3-NT inhibition suggests new therapeutic options in the treatment of neutrophil-related respiratory diseases such as chronic obstructive pulmonary disease and respiratory infections.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, Orbassano, Italy
| | | | | | | |
Collapse
|
21
|
Saraya T, Kurai D, Ishii H, Ito A, Sasaki Y, Niwa S, Kiyota N, Tsukagoshi H, Kozawa K, Goto H, Takizawa H. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus. Front Microbiol 2014; 5:226. [PMID: 24904541 PMCID: PMC4033317 DOI: 10.3389/fmicb.2014.00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Viral respiratory infections may be associated with the virus-induced asthma in adults as well as children. Particularly, human rhinovirus is strongly suggested a major candidate for the associations of the virus-induced asthma. Thus, in this review, we reviewed and focused on the epidemiology, pathophysiology, and treatment of virus-induced asthma with special reference on human rhinovirus. Furthermore, we added our preliminary data regarding the clinical and virological findings in the present review.
Collapse
Affiliation(s)
- Takeshi Saraya
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| | - Anri Ito
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| | - Yoshiko Sasaki
- Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan
| | - Shoichi Niwa
- Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan
| | - Naoko Kiyota
- Kumamoto Prefectural Institute of Public Health and Environmental Sciences Kumamoto, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan
| | - Kunihisa Kozawa
- Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, School of Medicine, Kyorin University Mitaka, Tokyo, Japan
| |
Collapse
|