1
|
Yun HM, Kim SH, Kwon YJ, Park KR. Effect of Spicatoside a on Anti-Osteosarcoma MG63 Cells through Reactive Oxygen Species Generation and the Inhibition of the PI3K-AKT-mTOR Pathway. Antioxidants (Basel) 2024; 13:1162. [PMID: 39456416 PMCID: PMC11505237 DOI: 10.3390/antiox13101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma is a primary malignant tumor found in the bones of children and adolescents. Unfortunately, many patients do not respond well to treatment and succumb to the illness. Therefore, it is necessary to discover novel bioactive compounds to overcome therapeutic limitations. Liriope platyphylla Wang et Tang is a well-known herb used in oriental medicine. Studies have shown that metabolic diseases can be clinically treated using the roots of L. platyphylla. Recent studies have demonstrated the anticarcinoma potential of root extracts; however, the exact mechanism remains unclear. The aim of this study was to examine the anti-osteosarcoma activity of a single compound extracted from the dried roots of L. platyphylla. We purified Spicatoside A (SpiA) from the dried roots of L. platyphylla. SpiA significantly inhibited the proliferation of human osteosarcoma MG63 cells in a dose- and time-dependent manner. SpiA also regulated the expression of various downstream proteins that mediate apoptosis (PARP, Bcl-2, and Bax), cell growth (cyclin D1, Cdk4, and Cdk6), angiogenesis (VEGF), and metastasis (MMP13). The Proteome Profiler Human Phospho-Kinase Array Kit showed that the AKT signaling protein was a target of SpiA in osteosarcoma cells. We also found that SpiA suppressed the constitutive activation of the PI3K-AKT-mTOR-p70S6K1 signaling pathway. We further validated the effects of SpiA on the AKT signaling pathway. SpiA induced autophagosome formation and suppressed necroptosis (a form of programmed cell death). SpiA increased the generation of reactive oxygen species (ROS) and led to the loss of mitochondrial membrane potential. N-acetylcysteine (NAC)-induced inhibition of ROS generation reduced SpiA-induced AKT inhibition, apoptotic cell death, and anti-metastatic effects by suppressing cell migration and invasion. Overall, these results highlight the anti-osteosarcoma effect of SpiA by inhibiting the AKT signaling pathway through ROS generation, suggesting that SpiA may be a promising compound for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
2
|
Baniya MK, Kim EH, Chun KS. Terfenadine, a histamine H1 receptor antagonist, induces apoptosis by suppressing STAT3 signaling in human colorectal cancer HCT116 cells. Front Pharmacol 2024; 15:1418266. [PMID: 38939837 PMCID: PMC11208689 DOI: 10.3389/fphar.2024.1418266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Colorectal cancer is a highly aggressive and metastatic cancer with inadequate clinical outcomes. Given the crucial role of histamine and histamine receptors in colorectal carcinogenesis, this study aimed at exploring the anticancer effects of terfenadine against colorectal cancer HCT116 cells and elucidate its underlying mechanism. Methods Herein, we examined the effect of terfenadine on growth and proliferation of HCT116 cells in vitro and in vivo. Various experimental techniques such as flow cytometry, western blot, immunoprecipitation, luciferase assay were employed to unveil the mechanism of cell death triggered by terfenadine. Results Terfenadine markedly attenuated the viability of HCT116 cells by abrogating histamine H1 receptor (H1R) signaling. In addition, terfenadine modulated the balance of Bax and Bcl-2, triggering cytochrome c discharge in the cytoplasm, thereby stimulating the caspase cascade and poly-(ADP-ribose) polymerase (PARP) degradation. Moreover, terfenadine suppressed murine double minute-2 (Mdm2) expression, whereas p53 expression increased. Terfenadine suppressed STAT3 phosphorylation and expression of its gene products by inhibiting MEK/ERK and JAK2 activation in HCT116 cells. Furthermore, treatment with U0126, a MEK inhibitor, and AG490, a JAK2 inhibitor, dramatically diminished the phosphorylations of ERK1/2 and JAK2, respectively, leading to STAT3 downregulation. Likewise, terfenadine diminished the complex formation of MEK1/2 with β-arrestin 2. In addition, terfenadine dwindled the phosphorylation of PKC substrates. Terfenadine administration (10 mg/kg) substantially retarded the growth of HCT116 tumor xenografts in vivo. Conclusion Terfenadine induces the apoptosis of HCT116 cells by abrogating STAT3 signaling. Overall, this study supports terfenadine as a prominent anticancer therapy for colorectal cancer.
Collapse
Affiliation(s)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Xiong Z, Wang Y. Potential Targets and Mechanisms of Dalbergia odorifera on Treating Lung Adenocarcinoma Explored by Network Pharmacology. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.52.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Park KR, Lee H, Kim SH, Yun HM. Paeoniflorigenone regulates apoptosis, autophagy, and necroptosis to induce anti-cancer bioactivities in human head and neck squamous cell carcinomas. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:115000. [PMID: 35051602 DOI: 10.1016/j.jep.2022.115000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paonia suffruticosa Andr. belonging to the family Paeoniaceae and has been used as a medicinal plant in Asian countries including China, Korea, and Japan. The roots of P. suffruticosa has been used in traditional medicine in various diseases including cancer and cardiovascular, female genital, and inflammatory diseases. AIM OF THE STUDY Head and neck squamous cell carcinomas (HNSCCs) pathologically account for 90% of all head and neck cancers. However, effective targeted therapies for HNSCCs are insufficient and the prognosis is very poor, especially in patients with metastatic HNSCCs. To overcome the current limitations of available therapies for HNSCCs, pathological approaches using natural compounds are attracting attention. Our study aimed to demonstrate the anti-cancer effects of paeoniflorigenone (Paeo, 98.9% purity) isolated from the root bark of P. suffruticosa. MATERIALS AND METHODS Our scientific methodology was performed as follows: cytotoxicity, morphological changes, and apototic DNA fragmentation were analyzed using MTT, light microscopy, and TUNEL assays. Protein expression, apoptosis, necroptosis, and autophagy were analyzed using Western blot and immunofluorescence assays. Cell migration and invasion were analyzed using wound healing and Boyden chamber assays. RESULTS We demonstrated that Paeo significantly reduced cell proliferation and cell division, leading to caspase-dependent apoptotic cell death in human YD-10B HNSCC cells. This result was associated with PI3K/AKT/mTOR/p70S6K signaling in these cells. In addition, we investigated other programmed cell death mechanisms associated with apoptosis and found that Paeo inhibited necroptosis via dephosphorylation of key necroptotic proteins (RIP and MLKL), whereas Paeo induced autophagy via increased LC3I/II expression and autophagosome formation in human YD-10B HNSCC cells. The anti-metastatic effects of Paeo significantly suppressed cell migration and invasion in human YD-10B HNSCC cells. CONCLUSION Overall, our results demonstrated that the bioactive compound, Paeo, exhibited anti-cancer bioactivities in human YD-10B HNSCC cells, suggesting that Paeo may be an attractive pathological approach for patients with human HNSCCs.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hanna Lee
- National Development Institute of Korean Medicine, Gyeongsan, 38540, Republic of Korea
| | - Soo Hyun Kim
- National Development Institute of Korean Medicine, Gyeongsan, 38540, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
The Hypolipidemic Effect of Dalbergia odorifera T. C. Chen Leaf Extract on Hyperlipidemic Rats and Its Mechanism Investigation Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3155266. [PMID: 34987591 PMCID: PMC8723852 DOI: 10.1155/2021/3155266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Objective The aim of this study was to explore the hypolipidemic effect and mechanism of Dalbergia odorifera T. C. Chen leaf extract. Methods The hypolipidemic effect of D. odorifera leaf extract was investigated using a hyperlipidemic rat model. Then, its mechanism was predicted using network pharmacology methods and verified using western blotting. Results Compared with the levels in the model group, the serum levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) decreased significantly, whereas the serum level of high-density lipoprotein cholesterol (HDL-C) increased dramatically after treatment with the extract. The degrees of hepatocyte steatosis and inflammatory infiltration were markedly attenuated in vivo. Then, its hyperlipidemic mechanism was predicted using network pharmacology-based analysis. Thirty-five key targets, including sterol regulatory element-binding protein cleavage-activating protein (SCAP), sterol regulatory element-binding protein-2 (SREBP-2), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), low-density lipoprotein receptor (LDLR), and ten signaling pathways, were associated with hyperlipidemia. Finally, it was verified that the extract downregulated the protein levels of SCAP, SREBP-2, and HMGCR, and upregulated protein levels of LDLR. Conclusion These findings provided additional evidence of the hypolipidemic effect of D. odorifera leaf extract.
Collapse
|
6
|
Sun D, Zhu D. Circular RNA hsa_circ_0001649 suppresses the growth of osteosarcoma cells via sponging multiple miRNAs. Cell Cycle 2020; 19:2631-2643. [PMID: 32954926 DOI: 10.1080/15384101.2020.1814026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a serious bone malignancy commonly occurred in childhood and adolescence. Circular RNA (circRNA) is a novel endogenous RNA that may be considered as a new biomarker for diseases' diagnosis or prognosis. This study explored the roles and mechanism of circ_0001649 in OS. The qRT-PCR was performed to test circ_0001649 expression in OS tissues and cells. Luciferase was used to confirm the binding of circ_0001649 with miR-338-5p, miR-647 and miR-942. OS cells were stably transfected with pEX-circ_0001649 or miRNAs mimic, CCK-8 kit, colony formation, apoptosis and western blot analysis were used to detect the roles of circ_0001649. Circ_0001649 was low-expressed in OS tissues and cell lines. Circ_0001649 overexpression suppressed U2OS and HOS cell viability and survival fraction, and induced apoptosis presented as the increasing levels of Apaf-1, cleaved-caspase-3 and cleaved-caspase-9. Further, circ_0001649 worked as a sponge to absorb miR-338-5p, miR-647 and miR-942 to suppress cell proliferation, induce apoptosis and inhibit STAT pathway. Circ_0001649 suppressed OS cell proliferation and STAT pathway and induced apoptosis through sponging miR-338-5p, miR-647 and miR-942.
Collapse
Affiliation(s)
- Deping Sun
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University , Yantai 264000, Shandong, China
| | - Dongsheng Zhu
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical University , Yantai 264000, Shandong, China
| |
Collapse
|
7
|
Chen M, Ye AX, Wei J, Wang R, Poon K. Deoxycholic Acid Upregulates the Reprogramming Factors KFL4 and OCT4 Through the IL-6/STAT3 Pathway in Esophageal Adenocarcinoma Cells. Technol Cancer Res Treat 2020; 19:1533033820945302. [PMID: 32869704 PMCID: PMC7469721 DOI: 10.1177/1533033820945302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells, a special subgroup of cancer cells, have self-renewal capabilities and multidirectional potential, which may be reprogrammed from the dedifferentiation of cancer cells, contributing to the failure of clinical treatments. Esophageal adenocarcinoma grows in an inflammatory environment stimulated by deoxycholic acid, an important component of gastroesophageal reflux content, contributing to the transformation of esophageal squamous epithelium to the precancerous lesions of esophageal adenocarcinoma, that is, Barrett esophagus. In the present study, deoxycholic acid was used to investigate whether it could induce the expression of reprogramming factors Krüppel-like factor, OCT4, and Nanog; the transformation to cancer stem cells in esophageal adenocarcinoma; and the involvement of the interleukin-6/signal transduction and activation of transcription 3 inflammatory signaling pathway. OE33 cells were treated with deoxycholic acid (250 μM) for 0 hour, 3 hours, 6 hours, and 12 hours before evaluating the messenger RNA expression of Krüppel-like factor, OCT4, Nanog, interleukin-6, and Bcl-xL by reverse transcription-quantitative polymerase chain reaction. Interleukin-6 protein was detected by enzyme linked immunosorbent assay, while signal transduction and activation of transcription 3, phosphorylated signal transduction and activation of transcription 3, Krüppel-like factor, and OCT4 were detected by Western blot. Signal transduction and activation of transcription 3 small interfering RNA and human recombinant interleukin-6 were used to treat OE33 cells and to detect their effects on Krüppel-like factor, OCT4, Nanog, CD44, hypoxia-inducible factor 1-α, and Bcl-xL expression. Results showed that deoxycholic acid promotes the expression of reprogramming factors Krüppel-like factor and OCT4, which are regulated by the interleukin-6/signal transduction and activation of transcription 3 signaling pathway. Deoxycholic acid has a malignancy-inducing effect on the transformation of esophageal adenocarcinoma stem cells, improving the antiapoptotic ability of tumors, and increasing the malignancy of esophageal adenocarcinoma. Deactivating the regulatory signaling pathway of interleukin-6/signal transduction and activation of transcription 3 and neutralizing deoxycholic acid may be novel targets for improving the clinical efficacy of esophageal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Mei Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - AXiaojun Ye
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Jingxi Wei
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - Karen Poon
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Grabovyi GA, Bhatti A, Mohr JT. Total Synthesis of Benzofuran-Based Aspergillusene B via Halogenative Aromatization of Enones. Org Lett 2020; 22:4196-4200. [PMID: 32437168 DOI: 10.1021/acs.orglett.0c01259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gennadii A. Grabovyi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Aisha Bhatti
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin T. Mohr
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Hu H, Wang S, Shi D, Zhong B, Huang X, Shi C, Shao Z. Lycorine exerts antitumor activity against osteosarcoma cells in vitro and in vivo xenograft model through the JAK2/STAT3 pathway. Onco Targets Ther 2019; 12:5377-5388. [PMID: 31371981 PMCID: PMC6626901 DOI: 10.2147/ott.s202026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Lycorine, a natural alkaloid, has been indicated to have various physiological effects, including a potential effect against cancer. However, the anticancer effect of lycorine on osteosarcoma (OS) and the detailed molecular mechanisms involved remain unclear. Purpose: The purpose of this study was to examine the effect of lycorine on human OS and elucidated it underlying mechanisms Materials and methods: In vitro assays, OS cells were treated with lycorine at various concentrations. Then the cell proliferation, colony formation, cell cycle distribution, apoptosis, migration and invasion were assayed to detect the anticancer effect of lycorine on OS cell lines. Western blotting analysis was used to verify the expression of related proteins. In addition, the mouse xenograft model was performed to evaluate lycorine’s therapeutic potential on OS in vivo. Results: The in vitro results demonstrated that lycorine induced apoptosis and cell cycle arrest and suppressed the migration and invasion by suppressing constitutive signal transducers and activators of transcription 3 (STAT3) activation through enhancing the expression of SH2 domain-containing phosphatase 1 (SHP-1) and downregulating the expression of STAT3 target proteins. Moreover, our mouse xenograft model revealed that lycorine inhibited the tumor growth in vivo. Conclusion: These results demonstrated that the anti-OS effects of lycorine were at least partly due to the suppression of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2)/STAT3 pathway. Taken together, these results indicate that lycorine possesses the potential to be a promising candidate in clinical therapy for human OS in the future.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Binglong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
10
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
11
|
Zhang Y, Yang F. Analyzing the disease module associated with osteosarcoma via a network- and pathway-based approach. Exp Ther Med 2018; 16:2584-2592. [PMID: 30210606 PMCID: PMC6122582 DOI: 10.3892/etm.2018.6506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor observed in children and adolescents. The aim of the present study was to identify an osteosarcoma-related gene module (OSM) by looking for a dense module following the integration of signals from genome-wide association studies (GWAS) into the human protein-protein interaction (PPI) network. A dataset of somatic mutations in osteosarcoma was obtained from the dbGaP database and their testing P-values were incorporated into the PPI network from a recent study using the dmGWAS bioconductor package. An OSM containing 201 genes (OS genes) and 268 interactions, which were closely associated with immune response, intracellular signal transduction and cell activity was identified. Topological analysis of the OSM identified 11 genes, including APP, APPBP2, ATXN1, HSP90B1, IKZF1, KRTAP10-1, PAK1, PDPK1, SMAD4, SUZ12 and TP53 as potential diagnostic biomarkers for osteosarcoma. The overall survival analysis of osteosarcoma for those 11 genes based on a dataset from the Cancer Genome Atlas, identified APP, HSP90B1, SUZ12 and IKZF1 as osteosarcoma survival-related genes. The results of the present study should be helpful in understanding the diagnosis and treatment of osteosarcoma and its underlying mechanisms. In addition, the methodology used in the present study may be suitable for the analysis of other types of disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Microsurgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Fei Yang
- Department of Orthopedic Joint Surgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
12
|
Sun Z, Liu Q, Hong H, Zhang H, Zhang T. miR-19 promotes osteosarcoma progression by targeting SOCS6. Biochem Biophys Res Commun 2017; 495:1363-1369. [PMID: 28986253 DOI: 10.1016/j.bbrc.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) play critical roles in cancer development and progression. This study investigated the effects of miR-19 in human osteosarcoma (OS) development. Here, we showed that miR-19 was frequently upregulated in OS tissues and cell lines. Moreover the expression of miR-19 was associated with TNM stage, metastasis, size and poor overall survival. Mechanistically, miR-19 dramatically suppressed OS growth in vitro and in vivo. Bioinformatics analyses predicted that SOCS6 is a potential target gene of miR-19 in OS, which was confirmed by luciferase-reporter assay. We also found that SOCS6 expression was downregulated and negatively correlated with miR-19 expression in OS tissues clinically. Moreover, ectopic SOCS6 could reverse miR-19 induced OS growth. Finally, JAK2/STAT3 signaling pathway involves miR-19/SOCS6-mediated OS progression. Together, our data provide important evidence for miR-19 mediated SOCS6 in OS growth and revealed miR-19/SOCS6/JAK2/STAT3 pathway as a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zhengwen Sun
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Qingxia Liu
- Maternity and Child Care Centers, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Huanyu Hong
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Haiguang Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Tongqing Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China.
| |
Collapse
|
13
|
Characterization of the complete chloroplast genome of Dalbergia odorifera (Leguminosae), a rare and critically endangered legume endemic to China. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0866-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|