1
|
Cho CK, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. PBPK modeling to predict the pharmacokinetics of venlafaxine and its active metabolite in different CYP2D6 genotypes and drug-drug interactions with clarithromycin and paroxetine. Arch Pharm Res 2024; 47:481-504. [PMID: 38664354 DOI: 10.1007/s12272-024-01495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Venlafaxine, a serotonin-norepinephrine reuptake inhibitor (SNRI), is indicated for the treatment of major depressive disorder, social anxiety disorder, generalized anxiety disorder, and panic disorder. Venlafaxine is metabolized to the active metabolite desvenlafaxine mainly by CYP2D6. Genetic polymorphism of CYP2D6 and coadministration with other medications can significantly affect the pharmacokinetics and/or pharmacodynamics of venlafaxine and its active metabolite. This study aimed to establish the PBPK models of venlafaxine and its active metabolite related to CYP2D6 genetic polymorphism and to predict drug-drug interactions (DDIs) with clarithromycin and paroxetine in different CYP2D6 genotypes. Clinical pharmacogenomic data for venlafaxine and desvenlafaxine were collected to build the PBPK model. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) characteristics of respective compounds were obtained from previously reported data, predicted by the PK-Sim® software, or optimized to capture the plasma concentration-time profiles. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and plasma concentration-time profiles to the observed data. Predicted plasma concentration-time profiles of venlafaxine and its active metabolite were visually similar to the observed profiles and all predicted AUC and Cmax values for respective compounds were included in the twofold error range of observed values in non-genotyped populations and different CYP2D6 genotypes. When clarithromycin or clarithromycin plus paroxetine was concomitantly administered, predicted plasma concentration-time profiles of venlafaxine properly captured the observed profiles in two different CYP2D6 genotypes and all predicted DDI ratios for AUC and Cmax were included within the acceptance range. Consequently, the present model successfully captured the pharmacokinetic alterations of venlafaxine and its active metabolite according to CYP2D6 genetic polymorphism as well as the DDIs between venlafaxine and two CYP inhibitors. The present model can be used to predict the pharmacokinetics of venlafaxine and its active metabolite considering different races, ages, coadministered drugs, and CYP2D6 activity of individuals and it can contribute to individualized pharmacotherapy of venlafaxine.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
2
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
3
|
Wang X, Ji T, Jiang Z, Wang J, Su X, Shan L. Tolterodine ameliorates inflammatory response and ferroptosis against LPS in human bladder epithelial cells. J Biochem Mol Toxicol 2024; 38:e23517. [PMID: 37702107 DOI: 10.1002/jbt.23517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Bacterial endotoxin lipopolysaccharide (LPS)-induced inflammatory response and ferroptosis play an important role in urinary tract infections. Tolterodine has been used as a urinary tract antispasmodic and anticholinergic agent. However, the effects of Tolterodine against LPS-induced insults in human bladder epithelial cells (hBECs) have not been reported before. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays to determine the cell viability, reactive oxygen species (ROS) and malondialdehyde level detection were used to determine the level of oxidative stress, enzyme-linked immunosorbent assay and Western blot analysis were used to detect the protein level. In the current study, we found that Tolterodine ameliorated LPS-induced production of ROS and lipid oxidation in hBECs. Interestingly, Tolterodine inhibited the production of interleukin 6, interleukin-1β, and tumor necrosis factor α. Also, Tolterodine reduced the levels of Fe2+ and suppressed ferroptosis by reducing the levels of glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2, and acyl-CoA synthetase long-chain family member 4 in LPS-challenged bladder epithelial cells. Mechanistically, it was shown that Tolterodine restored the nuclear factor E2-related factor 2 (Nrf2)/nuclear factor-κB signaling. Importantly, inhibition of Nrf2 with its specific inhibitor ML385 abolished the protective effects of Tolterodine in the inflammatory response and ferroptosis, suggesting that the effects of Tolterodine are mediated by Nrf2. Based on these findings, we conclude that Tolterodine might serve as a promising agent for the treatment of LPS-induced bladder inflammation.
Collapse
Affiliation(s)
- Xiangyang Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tongyu Ji
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhaoqiang Jiang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jianan Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiang Su
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lei Shan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Cho CK, Kang P, Jang CG, Lee SY, Lee YJ, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. Arch Pharm Res 2023; 46:939-953. [PMID: 38064121 DOI: 10.1007/s12272-023-01472-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Irbesartan, a potent and selective angiotensin II type-1 (AT1) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration-time profiles. Model evaluation was performed by comparing the predicted plasma concentration-time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration-time profiles were visually similar to observed profiles. Predicted AUCinf in CYP2C9*1/*3 and CYP2C9*1/*13 genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values for AUC and Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
5
|
Wang A, Zhao Q, Liu M, Wang Y, Zhao G, Li W, Peng Y, Zheng J. In Vitro and In Vivo Metabolic Activation of Tolterodine Mediated by CYP3A. Chem Res Toxicol 2023; 36:479-491. [PMID: 36795936 DOI: 10.1021/acs.chemrestox.2c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Tolterodine (TOL) is an antimuscarinic drug used for the treatment of patients with overactive bladder presenting urinary frequency, urgency, and urge incontinence. During the clinical use of TOL, adverse events such as liver injury took place. The present study aimed at the investigation of the metabolic activation of TOL possibly associated with its hepatotoxicity. One GSH conjugate, two NAC conjugates, and two cysteine conjugates were found in both mouse and human liver microsomal incubations supplemented with TOL, GSH/NAC/cysteine, and NADPH. The detected conjugates suggest the production of a quinone methide intermediate. The same GSH conjugate was also observed in mouse primary hepatocytes and in the bile of rats receiving TOL. One of the urinary NAC conjugates was observed in rats administered TOL. One of the cysteine conjugates was found in a digestion mixture containing hepatic proteins from animals administered TOL. The observed protein modification was dose-dependent. CYP3A primarily catalyzes the metabolic activation of TOL. Ketoconazole (KTC) pretreatment reduced the generation of the GSH conjugate in mouse liver and cultured primary hepatocytes after TOL treatment. In addition, KTC reduced the susceptibility of primary hepatocytes to TOL cytotoxicity. The quinone methide metabolite may be involved in TOL-induced hepatotoxicity and cytotoxicity.
Collapse
Affiliation(s)
- Aixuan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Qiang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Minglu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
6
|
Cho CK, Byeon JY, Kang P, Park JI, Jang CG, Lee SY, Choi CI, Bae JW, Lee YJ. Effects of CYP2D6*10 allele on the pharmacokinetics of tolperisone. Arch Pharm Res 2023; 46:59-64. [PMID: 36542291 DOI: 10.1007/s12272-022-01422-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Tolperisone, a muscle relaxant used for post-stroke spasticity, has been reported to have a very wide interindividual pharmacokinetic variability. It is metabolized mainly by CYP2D6 and, to a lesser extent, by CYP2C19 and CYP1A2. CYP2D6 is a highly polymorphic enzyme, and CYP2D6*wt/*wt, CYP2D6*wt/*10 and CYP2D6*10/*10 genotypes constitute more than 90% of the CYP2D6 genotypes in the Korean population. Thus, effects of the CYP2D6*10 on tolperisone pharmacokinetics were investigated in this study to elucidate the reasons for the wide interindividual variability. Oral tolperisone 150 mg was given to sixty-four healthy Koreans, and plasma concentrations of tolperisone were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CYP2D6*10/*10 and CYP2D6*wt/*10 groups had significantly higher Cmax and lower CL/F values than the CYP2D6*wt/*wt group. The AUCinf of CYP2D6*10/*10 and CYP2D6*wt/*10 groups were 5.18-fold and 2.25-fold higher than the CYP2D6*wt/*wt group, respectively. There were considerable variations in the Cmax and AUC values within each genotype group, and the variations were greater as the activity of CYP2D6 decreased. These results suggest that the genetic polymorphism of CYP2D6 significantly affected tolperisone pharmacokinetics and factor(s) other than CYP2D6 may also have significant effects on the pharmacokinetics of tolperisone.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Young Byeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-In Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
7
|
Shafiq A, Ahmad M, Minhas MU, Shoukat H, Pervaiz F, Shafique M, Ashraf S. Tolterodine tartrate loaded biodegradable and pH-responsive amphiphilic block copolymer (PF127) hydrogels: synthesis, characterization, and acute toxicity evaluation. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Afifa Shafiq
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Hina Shoukat
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Mamuna Shafique
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Shazia Ashraf
- Department of Pharmaceutics, Faculty of pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
8
|
Physiologically based pharmacokinetic modelling to predict the pharmacokinetics of metoprolol in different CYP2D6 genotypes. Arch Pharm Res 2022; 45:433-445. [PMID: 35763157 DOI: 10.1007/s12272-022-01394-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Metoprolol, a selective β1-adrenoreceptor blocking agent used in the treatment of hypertension, angina, and heart failure, is primarily metabolized by the CYP2D6 enzyme, which catalyzes α-hydroxylation and O-desmethylation. As CYP2D6 is genetically highly polymorphic and the enzymatic activity differs greatly depending on the presence of the mutant allele(s), the pharmacokinetic profile of metoprolol is highly variable depending on the genotype of CYP2D6. The aim of study was to develop the physiologically based pharmacokinetic (PBPK) model of metoprolol related to CYP2D6 genetic polymorphism for personalized therapy with metoprolol. For PBPK modelling, our previous pharmacogenomic data were used. To obtain kinetic parameters (Km, Vmax, and CLint) of each genotype, the recombinant CYP enzyme of each genotype was incubated with metoprolol and metabolic rates were assayed. Based on these data, the PBPK model of metoprolol was developed and validated in different CYP2D6 genotypes using PK-Sim® software. As a result, the input values for various parameters for the PBPK model were presented and the PBPK model successfully described the pharmacokinetics of metoprolol in each genotype group. The simulated values were within the acceptance criterion (99.998% confidence intervals) compared with observed values. The PBPK model developed in this study can be used for personalized pharmacotherapy with metoprolol in individuals of various races, ages, and CYP2D6 genotypes.
Collapse
|
9
|
Cho CK, Kang P, Park HJ, Ko E, Mu CY, Lee YJ, Choi CI, Kim HS, Jang CG, Bae JW, Lee SY. Physiologically based pharmacokinetic (PBPK) modeling of piroxicam with regard to CYP2C9 genetic polymorphism. Arch Pharm Res 2022; 45:352-366. [PMID: 35639246 DOI: 10.1007/s12272-022-01388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 01/12/2023]
Abstract
Piroxicam is a non-steroidal anti-inflammatory drug used to alleviate symptoms of osteoarthritis and rheumatoid arthritis. CYP2C9 genetic polymorphism significantly influences the pharmacokinetics of piroxicam. The objective of this study was to develop and validate the piroxicam physiologically based pharmacokinetic (PBPK) model related to CYP2C9 genetic polymorphism. PK-Sim® version 10.0 was used for the PBPK modeling. The PBPK model was evaluated by predicted and observed plasma concentration-time profiles, fold errors of predicted to observed pharmacokinetic parameters, and a goodness-of-fit plot. The turnover number (kcat) of CYP2C9 was adjusted to capture the pharmacokinetics of piroxicam in different CYP2C9 genotypes. The population PBPK model overall accurately described and predicted the plasma concentration-time profiles in different CYP2C9 genotypes. In our simulations, predicted AUCinf in CYP2C9*1/*2, CYP2C9*1/*3, and CYP2C9*3/*3 genotypes were 1.83-, 2.07-, and 6.43-fold higher than CYP2C9*1/*1 genotype, respectively. All fold error values for AUC, Cmax, and t1/2 were included in the acceptance criterion with the ranges of 0.57-1.59, 0.63-1.39, and 0.65-1.51, respectively. The range of fold error values for predicted versus observed plasma concentrations was 0.11-3.13. 93.9% of fold error values were within the two-fold range. Average fold error, absolute average fold error, and root mean square error were 0.93, 1.27, and 0.72, respectively. Our model accurately captured the pharmacokinetic alterations of piroxicam according to CYP2C9 genetic polymorphism.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chou Yen Mu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Kim NT, Cho CK, Kang P, Park HJ, Lee YJ, Bae JW, Jang CG, Lee SY. Effects of CYP2C9*3 and *13 alleles on the pharmacokinetics and pharmacodynamics of glipizide in healthy Korean subjects. Arch Pharm Res 2021; 45:114-121. [PMID: 34952963 DOI: 10.1007/s12272-021-01366-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022]
Abstract
Glipizide is a second-generation sulfonylurea antidiabetic drug. It is principally metabolized to inactive metabolites by genetically polymorphic CYP2C9 enzyme. In this study, we investigated the effects of CYP2C9*3 and *13 variant alleles on the pharmacokinetics and pharmacodynamics of glipizide. Twenty-four healthy Korean volunteers (11 subjects with CYP2C9*1/*1, 8 subjects with CYP2C9*1/*3, and 5 subjects with CYP2C9*1/*13) were recruited for this study. They were administered a single oral dose of glipizide 5 mg. The plasma concentration of glipizide was quantified for pharmacokinetic analysis and plasma glucose and insulin concentrations were measured as pharmacodynamic parameters. The results represented that CYP2C9*3 and *13 alleles significantly affected the pharmacokinetics of glipizide. In subjects with CYP2C9*1/*3 and CYP2C9*1/*13 genotypes, the mean AUC0-∞ were increased by 44.8% and 58.2%, respectively (both P < 0.001), compared to those of subjects with CYP2C9*1/*1 genotype, while effects of glipizide on plasma glucose and insulin levels were not significantly different between CYP2C9 genotype groups. In conclusion, individuals carrying the defective CYP2C9*3 and CYP2C9*13 alleles have markedly elevated plasma concentrations of glipizide compared with CYP2C9*1/*1 wild-type.
Collapse
Affiliation(s)
- Nam-Tae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Jung EH, Cho CK, Kang P, Park HJ, Lee YJ, Bae JW, Choi CI, Jang CG, Lee SY. Physiologically based pharmacokinetic modeling of candesartan related to CYP2C9 genetic polymorphism in adult and pediatric patients. Arch Pharm Res 2021; 44:1109-1119. [PMID: 34817825 DOI: 10.1007/s12272-021-01363-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Candesartan cilexetil is an angiotensin II receptor blocker and it is widely used to treat hypertension and heart failure. This drug is a prodrug that rapidly converts to candesartan after oral administration. Candesartan is metabolized by cytochrome P450 2C9 (CYP2C9) enzyme or uridine diphosphate glucurinosyltransferase 1A3, or excreted in an unchanged form through urine, biliary tract and feces. We investigated the effect of genetic polymorphism of CYP2C9 enzyme on drug pharmacokinetics using physiologically based pharmacokinetic (PBPK) modeling. In addition, by introducing the age and ethnicity into the model, we developed a model that can propose an appropriate dosage regimen taking into account the individual characteristics of each patient. To evaluate the suitability of the model, the results of a clinical trial on twenty-two healthy Korean subjects and their CYP2C9 genetic polymorphism data was applied. In this study, PK-Sim® was used to develop the PBPK model of candesartan.
Collapse
Affiliation(s)
- Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Cho CK, Park HJ, Kang P, Moon S, Lee YJ, Bae JW, Jang CG, Lee SY. Physiologically based pharmacokinetic (PBPK) modeling of meloxicam in different CYP2C9 genotypes. Arch Pharm Res 2021; 44:1076-1090. [PMID: 34807366 DOI: 10.1007/s12272-021-01361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Meloxicam, a non-steroidal anti-inflammatory drug, is used for the treatment of rheumatoid arthritis and osteoarthritis. Cytochrome P450 (CYP) 2C9 and CYP3A4 are major and minor enzymes involved in the metabolism of meloxicam. Impaired enzyme activity of CYP2C9 variants increases the plasma exposures of meloxicam and the risk of adverse events. The objective of our study is to develop and validate the physiologically based pharmacokinetic (PBPK) model of meloxicam related to CYP2C9 genetic polymorphism using the PK-Sim® software. In vitro kcat of CYP2C9 was optimized in different CYP2C9 genotypes. The demographic and pharmacokinetic dataset for the development of the PBPK model was extracted from two previous clinical pharmacokinetic studies. Thirty-one clinical datasets, representing different dose regimens and demographic characteristics, were utilized to validate the PBPK model. The shapes of simulated plasma concentration-time profiles in each CYP2C9 genotype were visually similar to observed profiles. The predicted exposures (AUCinf) of meloxicam in CYP2C9*1/*3, CYP2C9*1/*13, and CYP2C9*3/*3 genotypes were increased by 1.77-, 2.91-, and 8.35-fold compared to CYP2C9*1/*1 genotype, respectively. In all datasets for the development and validations, fold errors between predicted and observed pharmacokinetic parameters were within the two-fold error criteria. As a result, the PBPK model was appropriately established and properly described the pharmacokinetics of meloxicam in different CYP2C9 genotypes. This study is expected to contribute to reducing the risk of adverse events of meloxicam through optimization of meloxicam dosing in different CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungmin Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
13
|
Cho CK, Kang P, Park HJ, Lee YJ, Bae JW, Jang CG, Lee SY. Physiologically based pharmacokinetic (PBPK) modelling of tamsulosin related to CYP2D6*10 allele. Arch Pharm Res 2021; 44:1037-1049. [PMID: 34751931 DOI: 10.1007/s12272-021-01357-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Tamsulosin, a selective [Formula: see text]-adrenoceptor blocker, is commonly used for alleviation of lower urinary tract symptoms related to benign prostatic hyperplasia. Tamsulosin is predominantly metabolized by CYP3A4 and CYP2D6 enzymes, and several studies reported the effects of CYP2D6 genetic polymorphism on the pharmacokinetics of tamsulosin. This study aims to develop and validate the physiologically based pharmacokinetic (PBPK) model of tamsulosin in CYP2D6*wt/*wt, CYP2D6*wt/*10, and CYP2D6*10/*10 genotypes, using Simcyp® simulator. Physicochemical, and formulation properties and data for absorption, distribution, metabolism and excretion were collected from previous publications, predicted in the simulator, or optimized in different CYP2D6 genotypes. The tamsulosin PBPK model in CYP2D6*wt/*wt and CYP2D6*wt/*10 genotypes were developed based on the clinical pharmacokinetic study where a single oral dose of 0.2 mg tamsulosin was administered to 25 healthy Korean male volunteers with CYP2D6*wt/*wt and CYP2D6*wt/*10 genotypes. A previous pharmacokinetic study was used to develop the model in CYP2D6*10/*10 genotype. The developed model was validated using other clinical pharmacokinetic studies not used in development. The predicted exposures via the PBPK model in CYP2D6*wt/*10 and CYP2D6*10/*10 genotype was 1.23- and 1.76-fold higher than CYP2D6*wt/*wt genotype, respectively. The simulation profiles were visually similar to the observed profiles, and fold errors of all development and validation datasets were included within the criteria. Therefore, the tamsulosin PBPK model in different CYP2D6 genotypes with regards to CYP2D6*10 alleles was appropriately established. Our model can contribute to the implementation of personalized pharmacotherapy of patients, appropriately predicting the pharmacokinetics of tamsulosin reflecting their demographic and CYP2D6 genotype characteristics without unnecessary drug exposure.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
|
15
|
Physiologically based pharmacokinetic (PBPK) modeling for prediction of celecoxib pharmacokinetics according to CYP2C9 genetic polymorphism. Arch Pharm Res 2021; 44:713-724. [PMID: 34304363 DOI: 10.1007/s12272-021-01346-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022]
Abstract
Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) and a representative selective cyclooxygenase (COX)-2 inhibitor, which is commonly prescribed for osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute pain, and primary dysmenorrhea. It is mainly metabolized by CYP2C9 and partly by CYP3A4 after oral administration. Many studies reported that CYP2C9 genetic polymorphism has significant effects on the pharmacokinetics of celecoxib and the occurrence of adverse drug reactions. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of celecoxib according to CYP2C9 genetic polymorphism for personalized pharmacotherapy. Initially, a clinical pharmacokinetic study was conducted where a single dose (200 mg) of celecoxib was administered to 39 healthy Korean subjects with CYP2C9*1/*1 or CYP2C9*1/*3 genotypes to obtain data for PBPK development. Based on the conducted pharmacokinetic study and a previous pharmacokinetic study involving subjects with CYP2C9*1/*13 and CYP2C9*3/*3 genotype, PBPK model for celecoxib was developed. A PBPK model for CYP2C9*1/*1 genotype group was developed and then scaled to other genotype groups (CYP2C9*1/*3, CYP2C9*1/*13 and CYP2C9*3/*3). After model development, model validation was performed with comparison of five pharmacokinetic studies. As a result, the developed PBPK model of celecoxib successfully described the pharmacokinetics of each CYP2C9 genotype group and its predicted values were within the acceptance criterion. Additionally, all the predicted values were within two-fold error range in comparison to the previous pharmacokinetic studies. This study demonstrates the possibility of determining the appropriate dosage of celecoxib for each individual through the PBPK modeling with CYP2C9 genomic information. This approach could contribute to the reduction of adverse drug reactions of celecoxib and enable precision medicine.
Collapse
|
16
|
Trenaman SC, Bowles SK, Andrew MK, Goralski K. The role of sex, age and genetic polymorphisms of CYP enzymes on the pharmacokinetics of anticholinergic drugs. Pharmacol Res Perspect 2021; 9:e00775. [PMID: 34003603 PMCID: PMC8130657 DOI: 10.1002/prp2.775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
There is evidence that use of drugs with anticholinergic properties increases the risk of cognitive impairment, and increased exposure to these drugs potentiates this risk. Anticholinergic drugs are commonly used even with associated risk of adverse events. Aging, sex, and genetic polymorphisms of cytochrome P450 (CYP) enzymes are associated with alterations in pharmacokinetic processes, which increase drug exposure and may further increase the risk of adverse drug events. Due to the increasing burden of cognitive impairment in our aging population and the future of personalized medicine, the objective of this review was to provide a critical clinical perspective on age, sex, and CYP genetic polymorphisms and their role in the metabolism and exposure to anticholinergic drugs. Age-related changes that may increase anticholinergic drug exposure include pseudocapillarization of liver sinusoidal endothelial cells, an approximate 3.5% decline in CYP content for each decade of life, and a reduction in kidney function. Sex-related differences that may be influenced by anticholinergic drug exposure include women having delayed gastric and colonic emptying, higher gastric pH, reduced catechol-O-methyl transferase activity, reduced glucuronidation, and reduced renal clearance and men having larger stomachs which may affect medication absorption. The overlay of poor metabolism phenotypes for CYP2D6 and CYP2C19 may further modify anticholinergic drug exposure in a significant proportion of the population. These factors help explain findings of clinical trials that show older adults and specifically older women achieve higher plasma concentrations of anticholinergic drugs and that poor metabolizers of CYP2D6 experience increased drug exposure. Despite this knowledge neither age, sex nor CYP phenotype are routinely considered when making decisions about the use or dosing of anticholinergic medications. Future study of anticholinergic medication needs to account for age, sex and CYP polymorphisms so that we may better approach personalized medicine for optimal outcomes and avoidance of medication-related cognitive impairment.
Collapse
Affiliation(s)
- Shanna C Trenaman
- Department of Medicine (Division of Geriatric Medicine), Nova Scotia Health, Halifax, Nova Scotia, Canada.,Department of Medicine (Geriatrics), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan K Bowles
- Department of Medicine (Division of Geriatric Medicine), Nova Scotia Health, Halifax, Nova Scotia, Canada.,Department of Medicine (Geriatrics), Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacy, Nova Scotia Health, Halifax, Nova Scotia, Canada.,College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa K Andrew
- Department of Medicine (Division of Geriatric Medicine), Nova Scotia Health, Halifax, Nova Scotia, Canada.,Department of Medicine (Geriatrics), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry Goralski
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Division of Pediatric Hematology and Oncology, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Kumar AA, Anusree VR, Satheesh G, Vijayakumar G, Chandran M, Simon L, Lakshmi S, Pillai MR, Jaleel A. Hyperhomocysteinemia-related serum metabolome alterations not normalized by short-term folic acid treatment. Metabolomics 2021; 17:47. [PMID: 33966131 DOI: 10.1007/s11306-021-01798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hyperhomocysteinemia (HHCys) is an independent risk factor for various diseases such as cardiovascular diseases, Alzheimer's, and cancers. Folate deficiency is one of the significant reasons for HHCys. However, it is not known whether folate deficiency with HHCys is associated with any serum metabolites. OBJECTIVES Our objective was to identify the metabolic alterations in people having folate deficiency with HHCys and check whether a short-term folic acid therapy could reverse those metabolic changes. METHODS The study enrolled 34 participants aged between 18 and 40 years having folate deficiency (< 4.6 ng/mL) with HHCys (> 15 μmol/L) and 21 normal healthy individuals. A short-term intervention of oral folic acid (5 mg/day) was done in the HHCys group for 30 days. Untargeted metabolomics analysis of serum was performed in all study subjects before and after the folic acid treatment. Different univariate methods and the multivariable-adjusted linear regression models were employed to determine an association between homocysteine level and metabolite profile. RESULTS Metabolomics analysis data showed that many metabolites involved in the biochemical pathways of lipid metabolisms such as polyunsaturated fatty acids, glycerolipids, and phospholipids were downregulated in the HHCys group. Short-term oral folic acid therapy significantly reduced their serum homocysteine level. However, the metabolic pathway alterations observed in folate-deficient HHCys-condition were unaltered even after the folic acid treatment. CONCLUSIONS Our study revealed that people who have a folic acid deficiency with HHCys have an altered metabolite profile related to lipid metabolism, which cannot be reversed by short-term folic acid therapy.
Collapse
Affiliation(s)
- A Aneesh Kumar
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Vanaja R Anusree
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Gopika Satheesh
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Gadadharan Vijayakumar
- Medical Trust Hospital and Diabetes Care Centre, Kulanada, Pathanamthitta, Kerala, India
| | - Mahesh Chandran
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Leena Simon
- Medical Trust Hospital and Diabetes Care Centre, Kulanada, Pathanamthitta, Kerala, India
| | - Subhadra Lakshmi
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Madhavan R Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Abdul Jaleel
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
18
|
Shin HB, Jung EH, Kang P, Lim CW, Oh KY, Cho CK, Lee YJ, Choi CI, Jang CG, Lee SY, Bae JW. ABCB1 c.2677G>T/c.3435C>T diplotype increases the early-phase oral absorption of losartan. Arch Pharm Res 2020; 43:1187-1196. [PMID: 33249530 DOI: 10.1007/s12272-020-01294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022]
Abstract
Losartan has been shown to be a substrate of the drug-efflux transporter MDR1, encoded by the ABCB1 gene. ABCB1 c.2677G>T and c.3435C>T variants are known to be associated with reduced expression and function of P-glycoprotein (P-gp). We investigated the effects of ABCB1 diplotype on the pharmacokinetics of losartan. Thirty-eight healthy Korean volunteers with different ABCB1 diplotypes [c.2677G> T and c.3435C>T; carriers of GG/CC (n = 13), GT/CT (n = 12) and TT/TT (n = 13) diplotype] were recruited and administered a single 50 mg oral dose of losartan potassium. Losartan and its active metabolite E-3174 samples in plasma and urine were collected up to 10 and 8 h after drug administration, respectively, and the concentrations of both samples were determined by HPLC method. Significant differences were observed in Cmax of losartan and losartan plus E-3174 (Lo + E) among the three diplotype groups (both P < 0.01). However, the power of the performed test is less than the desired power (0.800). The tmax of losartan and E-3174 in three diplotype groups were also significantly different (both P < 0.01). The AUC values of Lo + E were significantly different among the three diplotype groups until 6 h after losartan administration (P < 0.01). On the contrary, AUC at the periods of 8-10 h and 10 h-infinity of Lo + E were significantly lower in the TT/TT group than in the GG/CC group. Urinary excretion of losartan until 4 h after losartan administration in the TT/TT group was higher than that of the GG/CC group. These results suggest that c.2677G>T/c.3435C>T diplotypes of ABCB1 may significantly increase the early-phase absorption of losartan, but not the total absorption.
Collapse
Affiliation(s)
- Hyo-Bin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Yul Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
19
|
Jung EH, Lee YJ, Kim DH, Kang P, Lim CW, Cho CK, Jang CG, Lee SY, Bae JW. Effects of paroxetine on the pharmacokinetics of atomoxetine and its metabolites in different CYP2D6 genotypes. Arch Pharm Res 2020; 43:1356-1363. [PMID: 33245517 DOI: 10.1007/s12272-020-01300-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of paroxetine, a potent inhibitor of CYP2D6, on the pharmacokinetics of atomoxetine and its two metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine, in different CYP2D6 genotypes. Twenty-six healthy subjects were recruited and divided into CYP2D6*wt/*wt (*wt=*1 or *2, n = 10), CYP2D6*wt/*10 (n = 9), and CYP2D6*10/*10 groups (n = 7). In atomoxetine phase, all subjects received a single oral dose of atomoxetine (20 mg). In paroxetine phase, after administration of a single oral dose of paroxetine (20 mg) for six consecutive days, all subjects received a single oral dose of atomoxetine with paroxetine. Plasma concentrations of atomoxetine and its metabolites were determined up to 24 h after dosing. During atomoxetine phase, there were significant differences in Cmax and AUC0-24 of atomoxetine and N-desmethylatomoxetine among three genotype groups, whereas significant differences were not found in relation to CYP2D6*10 allele after administration of paroxetine. AUC ratios of 4-hydroxyatomoxetine and N-desmethylatomoxetine to atomoxetine were significantly different among three genotype groups during atomoxetine phase (all, P < 0.001), but after paroxetine treatment significant differences were not found. After paroxetine treatment, AUC0-24 of atomoxetine was increased by 2.3-, 1.7-, and 1.3-fold, in CYP2D6*wt/*wt, CYP2D6*wt/*10, and CYP2D6*10/*10 groups in comparison to atomoxetine phase, respectively. AUC ratio of 4-hydroxyatomoxetine to atomoxetine in each group was significantly decreased, whereas AUC ratio of N-desmethylatomoxetine to atomoxetine significantly increased after administration of paroxetine. In conclusion, paroxetine coadministration significantly affected pharmacokinetic parameters of atomoxetine and its two metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine. When atomoxetine was administered alone, Cmax, AUC0-24 and CL/F of atomoxetine were significantly different among the three CYP2D6 genotype groups. However, after paroxetine coadministration, no significant differences in these pharmacokinetic parameters were observed among the CYP2D6 genotype groups.
Collapse
Affiliation(s)
- Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
20
|
Bae JW, Oh KY, Yoon SJ, Shin HB, Jung EH, Cho CK, Lim CW, Kang P, Choi CI, Jang CG, Lee SY, Lee YJ. Effects of CYP2D6 genetic polymorphism on the pharmacokinetics of metoclopramide. Arch Pharm Res 2020; 43:1207-1213. [PMID: 33247397 DOI: 10.1007/s12272-020-01293-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Metoclopramide inhibits the central and peripheral D2 receptors and is frequently prescribed in adults and children as an antiemetic or a prokinetic drug to control symptoms of upper gastrointestinal motor disorders. Metoclopramide is predominantly metabolized via N-dealkylation and it is primarily mediated by CYP2D6 which is highly polymorphic. Thus, the effects of CYP2D6 genetic polymorphism on the pharmacokinetics of metoclopramide were evaluated in this study. All volunteers were genotyped for CYP2D6 and divided into four different genotype groups (CYP2D6*wt/*wt [*wt = *1 or *2], CYP2D6*wt/*10, CYP2D6*10/*10, and CYP2D6*5/*10). Each subject received a single oral dose of metoclopramide 10 mg. Plasma concentrations of metoclopramide were measured by using HPLC-UV. Compared to CYP2D6*wt/*wt, AUCinf of CYP2D6*wt/*10, CYP2D6*10/*10, and CYP2D6*5/*10 significantly increased by 1.5-, 2.3-, and 2.5-fold, respectively. Cmax also increased significantly in comparison to CYP2D6*wt/*wt across all genotype groups, with 1.5-, 1.7-, and 1.7-fold increases seen in CYP2D6*wt/*10, CYP2D6*10/*10, and CYP2D6*5/*10 groups, respectively. The CL/F of metoclopramide decreased in CYP2D6 genotype groups with decreased function alleles, as decreases of 37%, 56% and 61% were observed in CYP2D6*wt/10, *10/10, and *5/*10 genotype groups in comparison to the CYP2D6*wt/*wt group. In conclusion, the genetic polymorphisms of CYP2D6 significantly affected metoclopramide pharmacokinetics.
Collapse
Affiliation(s)
- Jung-Woo Bae
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Kyung-Yul Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - So-Jung Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo-Bin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
21
|
Yamane M, Igarashi F, Yamauchi T, Nakagawa T. Main contribution of UGT1A1 and CYP2C9 in the metabolism of UR-1102, a novel agent for the treatment of gout. Xenobiotica 2020; 51:61-71. [PMID: 32813611 DOI: 10.1080/00498254.2020.1812012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UR-1102, a novel uricosuric agent for treating gout, has been confirmed to exhibit a pharmacological effect in patients. We clarified its metabolic pathway, estimated the contribution of each metabolic enzyme, and assessed the impact of genetic polymorphisms using human in vitro materials. Glucuronide, sulfate and oxidative metabolites of UR-1102 were detected in human hepatocytes. The intrinsic clearance by glucuronidation or oxidation in human liver microsomes was comparable, but sulfation in the cytosol was much lower, indicating that the rank order of contribution was glucuronidation ≥ oxidation > sulfation. Recombinant UGT1A1 and UGT1A3 showed high glucuronidation of UR-1102. We took advantage of a difference in the inhibitory sensitivity of atazanavir to the UGT isoforms and estimated the fraction metabolised (fm) with UGT1A1 to be 70%. Studies using recombinant CYPs and CYP isoform-specific inhibitors showed that oxidation was mediated exclusively by CYP2C9. The effect of UGT1A1 and CYP2C9 inhibitors on UR-1102 metabolism in hepatocytes did not differ markedly between the wild type and variants.
Collapse
Affiliation(s)
- Mizuki Yamane
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | | | | | - Toshito Nakagawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| |
Collapse
|
22
|
Relationship between plasma exposure of zolpidem and CYP2D6 genotype in healthy Korean subjects. Arch Pharm Res 2020; 43:976-981. [PMID: 32661920 DOI: 10.1007/s12272-020-01250-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Zolpidem, a widely prescribed hypnotic agent, is extensively metabolized by cytochrome P450 (CYP) 3A4, and CYP2C9, CYP1A2 and CYP2D6 are also involved in the metabolism of zolpidem. The aim of the study was to investigate the effects of CYP2D6 genotypes on the exposure of zolpidem. The healthy male volunteers were divided into three different genotype groups (CYP2D6*wt/*wt [*wt = *1 or *2], CYP2D6*wt/*10, and CYP2D6*10/*10). Each subject received a single oral dose of zolpidem 5 mg with or without a steady-state concentration of clarithromycin (a potent inhibitor of CYP3A4), and plasma concentrations of zolpidem were measured up to 12 h after zolpidem dosing by using liquid chromatography-tandem mass spectrometry method. When zolpidem was administered alone, the exposure of zolpidem (the total areas under the curve and the mean peak plasma concentrations) was not significantly different among three different genotype groups. Even with the steady-state concentration of clarithromycin, a potent CYP3A4 inhibitor, there were no significant differences in the exposure of zolpidem in relation to CYP2D6 genotypes.
Collapse
|