1
|
Gao N, Huang Z, Xie J, Gao S, Wang B, Feng H, Bao C, Tian H, Liu X. Cryptotanshinone alleviates cerebral ischemia reperfusion injury by regulating ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119800. [PMID: 40222690 DOI: 10.1016/j.jep.2025.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cryptotanshinone (CT) is a kind of Chinese medicine extracted from salvia miltiorrhiza, which has various pharmacological activities and is widely used in the treatment of diseases. AIM OF THE STUDY The objective is to delve into the mechanism by which cryptotanshinone (CT) exerts its effects on rats with the middle cerebral artery occlusion/reperfusion (MCAO/R) model. Additionally, it aims to further assess the interplay between inflammation and oxidative stress, along with the underlying mechanism of CT's anti-ferroptosis function. MATERIALS AND METHODS We constructed the middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats. The effects of cryptotanshinone (CT) were evaluated using 2,3,5 - triphenyltetrazolium chloride (TTC) staining, behavioral assays, immunofluorescence, hematoxylin - eosin (HE) staining, and Nissl staining. Additionally, in vitro, cell viability was assessed by the Cell Counting Kit - 8 (CCK - 8) assay following experimental dosing. Oxygen - glucose deprivation/oxidation (OGD/R) models were established in PC12 and BV2 cells. Flow cytometry was employed to detect cellular reactive oxygen species (ROS) expression. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-px), and Mitochondrial Membrane Potential Assay Kit with JC-1(JC-1) were measured using biochemical methods. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Immunoblotting was used to detect the levels of rat phosphatidylinositol 3 - kinase (PI3K), phosphorylated-PI3K (P-PI3K), protein kinase B (AKT), phosphorylated - AKT (P-AKT), nuclear factor erythroid 2 - related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). RESULTS In rats with the MCAO/R model, CT demonstrated the ability to decrease ROS levels, enhance the activity of glutathione (GSH), mitigate inflammation, augment the activity of glutathione peroxidase 4 (GPX4), inhibit ferroptosis, safeguard neurons, and facilitate the restoration of nerve function. Results from network pharmacology indicated that the action of CT might be mediated via the PI3K/Akt signaling pathway. Simultaneously, in-vivo investigations revealed that CT curbs ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathways. CONCLUSION CT can inhibit ferroptosis by inhibiting the vicious cycle between oxidative stress and inflammation, protect neurons and promote motor function recovery.
Collapse
Affiliation(s)
- Nana Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Zongyu Huang
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Jianjie Xie
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Cuifen Bao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Xia Liu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
3
|
Yao J, Pan J, Jiang Q, Wang H, Zhao Y. Baicalein inhibits NLRP3 inflammasome activation and mitigates placental inflammation and oxidative stress in gestational diabetes mellitus. Open Life Sci 2024; 19:20220966. [PMID: 39759105 PMCID: PMC11699560 DOI: 10.1515/biol-2022-0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy characterized by glucose intolerance, which poses risks to both maternal and fetal health. Baicalein, a flavonoid derived from the roots of Scutellaria baicalensis Georgi, exhibits various biological functions and has been implicated in the modulation of several diseases. However, the regulatory effects and underlying mechanisms of Baicalein in GDM progression remain unclear. In this study, we found that Baicalein ameliorates metabolic disturbances in GDM mice by improving glucose tolerance, insulin sensitivity, fasting blood glucose levels, and plasma insulin levels. Additionally, Baicalein treatment positively impacted litter size and birth weight. GDM mice exhibited increased inflammation and oxidative stress, which were mitigated following Baicalein administration (40 mg/kg). Furthermore, elevated protein levels of NLRP3, IL-1β, and IL-18 observed in GDM mice were reduced by Baicalein treatment. In conclusion, Baicalein inhibits the NLRP3 inflammasome and alleviates placental inflammation and oxidative stress associated with GDM. These findings provide valuable insights into the potential therapeutic role of Baicalein in managing GDM.
Collapse
Affiliation(s)
- Jun Yao
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Jiaying Pan
- Department of Obstetrics and Gynecology, Xianju County People’s Hospital, Taizhou, Zhejiang, 317399, China
| | - Qiaoying Jiang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Hui Wang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Yiqi Zhao
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
5
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
6
|
Yu Y, Qin X, Chen X, Nie H, Li J, Yao J. Suppression of retinal neovascularization by intravitreal injection of cryptotanshinone. Biochem Biophys Res Commun 2024; 720:150065. [PMID: 38749188 DOI: 10.1016/j.bbrc.2024.150065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Neovascular eye diseases, including proliferative diabetic retinopathy and retinopathy of prematurity, is a major cause of blindness. Laser ablation and intravitreal anti-VEGF injection have shown their limitations in treatment of retinal neovascularization. Identification of a new therapeutic strategies is in urgent need. Our study aims to assess the effects of Cryptotanshinone (CPT), a natural compound derived from Salvia miltiorrhiza Bunge, in retina neovascularization and explore its potential mechanism. Our study demonstrated that CPT did not cause retina tissue toxicity at the tested concentrations. Intravitreal injections of CPT reduced pathological angiogenesis and promoted physical angiogenesis in oxygen-induced retinopathy (OIR) model. CPT improve visual function in OIR mice and reduced cell apoptosis. Moreover, we also revealed that CPT diminishes the expression of inflammatory cytokines in the OIR retina. In vitro, the administration of CPT effectively inhibited endothelial cells proliferation, migration, sprouting, and tube formation induced by the stimulation of human retinal vascular endothelial cells (HRVECs) with VEGF165. Mechanistically, CPT blocking the phosphorylation of VEGFR2 and downstream targeting pathway. After all, the findings demonstrated that CPT exhibits potent anti-angiogenic and anti-inflammatory effects in OIR mice, and it has therapeutic potential for the treatment of neovascular retinal diseases.
Collapse
Affiliation(s)
- Yang Yu
- Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xun Qin
- Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Huiling Nie
- Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Juxue Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Yao
- Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Liao T, Xu X, Zhang Y, Yan J. Interactive effects of gestational diabetes mellitus and maximum level of total bile acid in maternal serum on adverse pregnancy outcomes in women with intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2023; 23:326. [PMID: 37158870 PMCID: PMC10165833 DOI: 10.1186/s12884-023-05621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE To study the combined effect of gestational diabetes mellitus (GDM) and maximum level of maternal serum total bile acid (TBA) on the incidence of adverse pregnancy outcomes in women with intrahepatic cholestasis of pregnancy (ICP). METHODS This was an observational study with 724 women with ICP. Perinatal outcomes were compared by the presence of GDM. Logistic regression was used to assess the independent and multiplicative interactions of GDM and maximum maternal serum TBA on adverse pregnancy outcomes. Additive interactions were calculated using an Excel sheet developed by Andersson to calculate relative excess risks. RESULTS The incidence of GDM in patients with ICP was 21.55%. Maternal age, pre-pregnancy weight, parity, and gravidity were positively correlated with GDM. Hypertensive disorders of pregnancy (HDP) and fetal distress rates were higher in the GDM vs. non-GDM group. There were no significant differences in biochemical outcomes (i.e., Triglyceride (TG), low density lipoprotein (LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bile acid (TBA)) between the two groups. In terms of adverse pregnancy outcomes, GDM was only associated with maximum TBA concentration for cesarean section. No additive or pairwise interactions were detected between GDM and maximum TBA concentration and HDP, PPH, preterm delivery, LGA, SGA, and cesarean section. CONCLUSION GDM independently contributes to adverse pregnancy outcomes among women with ICP. However, the combined effects of GDM and maximum TBA concentration on adverse pregnancy outcomes do not appear to be multiplicative or additive.
Collapse
Affiliation(s)
- Tingting Liao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Xia Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Yulong Zhang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Jianying Yan
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China.
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou City, Fujian Province, 350001, China.
| |
Collapse
|
8
|
Cheng W, Zhang L, Sa P, Luo J, Li M. Transcriptomic analysis reveals the effects of maternal selenium deficiency on placental transport, hormone synthesis, and immune response in mice. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6674774. [PMID: 36002020 DOI: 10.1093/mtomcs/mfac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022]
Abstract
Selenium deficiency has been considered to increase the risk of gestational complications. Our previous work showed that maternal selenium deficiency suppressed proliferation, induced autophagy dysfunction and apoptosis in the placenta of mice. However, other effects of maternal selenium deficiency on the placenta and the underlying mechanisms remain unclear. In the present study, dietary selenium deficiency in dams significantly suppressed glutathione peroxidase (GSH-Px) activity, total antioxidant capacity (T-AOC), and increased malondialdehyde (MDA) content in the placentae, confirming the oxidative stress in the placenta. By transcriptome sequencing analysis, the DEGs were involved in many biological processes, including ion transport, lipid metabolic process, immune response, transmembrane transport, and others. According to the KEGG analysis, the DEGs were primarily enriched in metabolic pathways, PI3K-Akt signaling pathway, and others. Among these, the steroid hormone biosynthesis pathway enriched the most DEGs. Hsd3b1, an ER enzyme involved in progesterone synthesis, was validated downregulated. Consistently, the progesterone content in the serum of the selenium-deficient group was decreased. Ion transporters and transmembrane transporters, such as Heph, Trf, Slc39a8, Slc23a1, Atp7b, and Kcnc1, were reduced in the selenium-deficient placentae. Immune response-related genes, including Ccl3, Ccl8, Cxcl10, and Cxcl14, were increased in the selenium-deficient placentae, along with an increase in macrophage number. These results suggested that maternal selenium deficiency may impair progesterone biosynthesis, reduce nutrient transporters expression, and promote immune response by increasing the oxidative stress of the placentae. This present study provides a novel insight into the possible cause of placenta disorder during pregnancy.
Collapse
Affiliation(s)
- Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lantian Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peiyue Sa
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jing Luo
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
9
|
Wang Q, Liu Y. Cryptotanshinone ameliorates MPP +-induced oxidative stress and apoptosis of SH-SY5Y neuroblastoma cells: the role of STAT3 in Parkinson's disease. Metab Brain Dis 2022; 37:1477-1485. [PMID: 35396628 DOI: 10.1007/s11011-022-00905-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
Cryptotanshinone (CTN) has shown its neuroprotective and anti-inflammatory qualities in non-genetic mouse model of Alzheimer's disease. According to bioinformatics analysis, CTN and Signal Transducer and Activator of Transcription 3 (STAT3) may interact to form a drug-target network. This study was conducted to identify the role of CTN-STAT3 interaction in Parkinson's disease (PD). PD model was established with MMP+-stimulated SH-SY5Y cells. After pre-treatment with CTN or co-treatment with CTN and STAT3 agonist, MTT assay was performed to observe cell viability; ELISA kit was used to measure the expression level of pro-inflammatory cytokines; DCFH-DA and corresponding assay kits were employed to determine the production of ROS, SOD, CAT and GSH-px; TUNEL assay and western blot were performed to detect cell apoptosis. STAT3 activity was also detected by western blot. Treatment with CTN alone had no impact on SH-SY5Y cell viability, but CTN pre-treatment effectively improved MPP+-induced loss of viability in SH-SY5Y cells. Moreover, pre-treatment with CTN inhibited MPP+-induced oxidative stress, apoptosis and STAT3 activity in SH-SY5Y cells, whereas this inhibitory effect was diminished after additional treatment with STAT3 agonist. CTN ameliorates MPP+-induced oxidative stress and apoptosis of SH-SY5Y neuroblastoma cells by inhibiting the expression of STAT3. Therefore, CTN could be a promising therapeutic agent, and STAT3 could be a potential target for PD treatment.
Collapse
Affiliation(s)
- Quanzhe Wang
- Department of Pharmacy, The Third Affiliated Hospital of Baotou Medical College, No.16 Tuanjie Street, Qingshan District, Baotou City, 014030, Inner Mongolia, China
| | - Yan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Baotou Medical College, No.16 Tuanjie Street, Qingshan District, Baotou City, 014030, Inner Mongolia, China.
| |
Collapse
|
10
|
Liu H, Xie J, Fan L, Xia Y, Peng X, Zhou J, Ni X. Cryptotanshinone Protects against PCOS-Induced Damage of Ovarian Tissue via Regulating Oxidative Stress, Mitochondrial Membrane Potential, Inflammation, and Apoptosis via Regulating Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8011850. [PMID: 35419170 PMCID: PMC9001078 DOI: 10.1155/2022/8011850] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of childbearing age. Cryptotanshinone (CRY) has been shown to be effective in reversing reproductive disorders, but whether it can be used in the treatment of polycystic ovary syndrome remains unclear. We aimed to explore whether the mechanism of cryptotanshinone (CRY) in the treatment of polycystic ovary syndrome (PCOS) can be driven via regulating ferroptosis. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. An in vitro model of ischemia-reperfusion (IR) of granulosa cells was established. The in vitro and rat models of PCOS were subjected to different treatments including ferroptosis activators and inhibitors, CRY, and MAPK inhibitor. Oxidative stress was evaluated by measuring the activities of SOD, MDA, and GSH-PX. Total body weight and ovarian weight, as well as the levels of LH and the LH to FSH ratio, significantly increased in rats with PCOS, compared with controls. The expression of Bax was increased in PCOS tissues while PGC1α, NFR1, GPX4, catalase p-ERK, and Bcl-2 were all downregulated. Ferroptosis activator, erastin, had effects similar to those of PCOS while the contrary was found with CRY and ferroptosis inhibitor treatment groups. In vitro, CRY inhibited oxidative stress, MMP, and NF-κB and activated MAPK/ERK signaling by regulating ferroptosis. Overall, this study indicated that CRY protects against PCOS-induced damage of the ovarian tissue, via regulating oxidative stress, MMP, inflammation, and apoptosis via regulating ferroptosis.
Collapse
Affiliation(s)
- Honglin Liu
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| | - Jiani Xie
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| | - Limin Fan
- The Institute for Biomedical Engineering and Nano Science Tongji University School of Medicine, No. 1239, Siping Road, Shanghai 200092, China
| | - Yue Xia
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| | - Xia Peng
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| | - Jianhua Zhou
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| | - Xiaorong Ni
- Department of Gynecology, Shanghai University of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine Hospital, 274 Middle Zhi Jiang Rd, Shanghai 200071, China
| |
Collapse
|
11
|
Gu Y, Liu W, Liu G, Li X, Lu P. Assessing the protective effects of cryptotanshinone on CoCl 2‑induced hypoxia in RPE cells. Mol Med Rep 2021; 24:739. [PMID: 34435647 PMCID: PMC8404095 DOI: 10.3892/mmr.2021.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The development of several retinal diseases is closely related to hypoxia. As a component of the Traditional Chinese medicine Salvia miltiorrhiza, the effects of cryptotanshinone (CT) on retinal cells under hypoxic conditions are not well understood. The aim of the present study was to explore how CT exerted its protective effects on retinal pigment epithelium (RPE) cells under hypoxic conditions induced by cobalt chloride (CoCl2). The effects of CT were investigated using a Cell Counting Kit-8 assay, Annexin V-FITC/PI staining, reverse transcription-quantitative PCR and western blotting in ARPE-19 cells. CT (10 and 20 µM) reduced the CoCl2-induced increase in vascular endothelial growth factor expression and hypoxia-inducible transcription factor-1α expression in ARPE-19 cells. Additionally, CT alleviated hypoxia-induced apoptosis by regulating Bcl-2 and Bax protein expression. CT treatment also reduced the increase in the mRNA levels of IL-6, IL-1β and TNF-α induced by CoCl2. In summary, CT may protect RPE cells against apoptosis and inflammation in CoCl2-induced hypoxia, and these results warrant further in vivo study into its value as a drug for treating hypoxic eye diseases.
Collapse
Affiliation(s)
- Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|