1
|
Wang Y, Gao S, Gao S, Li N, Huang H, Liu X, Yao H, Shen X. Pigment epithelium-derived factor exerts neuroprotection in oxygen-induced retinopathy by targeting endoplasmic reticulum stress and oxidative stress. Exp Eye Res 2024; 249:110147. [PMID: 39510404 DOI: 10.1016/j.exer.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have been involved in the occurrence of neuronal apoptosis in ischemic retinopathy. Pigment epitheliu-derived factor (PEDF) is well known for its multifunctional properties, including neuroprotection, anti-inflammation and antioxidant. However, the association between PEDF and ER stress or oxidative stress in ischemic retinopathy remain incompletely understood. In this study, the concentration of the key factor of ER stress C/EBP homologous protein (CHOP) in aqueous humor (AqH) and vitreous samples of proliferative diabetic retinopathy (PDR) patients were measured by ELISA assays. Oxygen-induced retinopathy (OIR) mice model was established and PEDF intravitreal injections were conducted. Primary bone marrow derived macrophages (BMDMs) were isolated and cultured under hypoxic conditions in vitro. Western blotting, real-time RT-PCR, immunofluorescence, transmission electron microscopy (TEM), TUNEL assays were performed to explore roles of PEDF on ER stress and oxidative stress, as well as subsequently neuronal apoptosis under hypoxic conditions in vivo and in vitro. The results revealed that ER stress and oxidative stress were notably activated under hypoxic conditions. We also observed that hypoxia evoked ultrastructural damage of ER and mitochondrion in the retina. However, PEDF significantly prevented ER stress and oxidative stress, as well as the damage of ultrastructure, resulting in diminution of photoreceptor apoptosis in OIR retinas. These results indicate that PEDF may play its neuroprotection role through inhibiting ER stress and oxidative stress in ischemic retinopathy, which is a novel molecular mechanism of PEDF protecting photoreceptors from ischemic damage, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of neuron damage in ischemic retinal diseases.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiping Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Feng Y, Chen X, Chen D, He J, Zheng P, Luo Y, Yu B, Huang Z. Dietary grape seed proanthocyanidin extract supplementation improves antioxidant capacity and lipid metabolism in finishing pigs. Anim Biotechnol 2023; 34:4021-4031. [PMID: 37647084 DOI: 10.1080/10495398.2023.2252012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Grape seed proanthocyanidin extract (GSPE) plays a significant role in body health, including improving antioxidant capacity and maintaining lipid metabolism stability. However, whether dietary GSPE supplementation can improve lipid metabolism in finishing pigs remains unclear. Here 18 castrated male Duroc × Landrace × Yorkshire finishing pigs were randomly divided into three groups with six replicates and one pig per replicate. Pigs were fed a basal diet (control), a basal diet supplemented with 100 mg/kg GSPE, or a basal diet supplemented with 200 mg/kg GSPE for 30 days. Antioxidant analysis showed that dietary 200 mg/kg GSPE supplementation increased glutathione, total antioxidant capacity and glutathione peroxidase levels, and reduced malondialdehyde levels in serum, muscle and liver. Dietary 200 mg/kg GSPE supplementation also upregulated the mRNA and protein levels of nuclear-related factor 2 (Nrf2). Lipid metabolism analysis showed that dietary GSPE supplementation increased serum high-density lipoprotein cholesterol levels and reduced serum triglyceride and total cholesterol levels. Besides, GPSE upregulated the mRNA expression of lipolysis- and fatty acid oxidation-related genes downregulated the mRNA expression of lipogenesis-related genes, and activated the AMPK signal in finishing pigs. Together, we provided evidence that dietary GSPE supplementation improved the antioxidant capacity and lipid metabolism in finishing pigs.
Collapse
Affiliation(s)
- Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
3
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
4
|
Metabolomics-Based Profiling, Antioxidant Power, and Uropathogenic Bacterial Anti-Adhesion Activity of SP4TM, a Formulation with a High Content of Type-A Proanthocyanidins. Antioxidants (Basel) 2022; 11:antiox11071234. [PMID: 35883725 PMCID: PMC9312030 DOI: 10.3390/antiox11071234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
Flavonoids and proanthocyanidins (PACs) have been the subject of intense scientific investigations, both for their antioxidant properties and anti-adhesion activity against uropathogenic bacteria. We investigated the metabolomics and antioxidant capacity of SP4TM, a patent-pending formulation based on a mixture of plant extracts with a high content of bioactive PACs and other polyphenols. The total content of polyphenols (885.51 ± 14.19 mg/g), flavonoids (135.52 ± 8.98 mg/g), anthocyanins (54.84 ± 2.97 mg/g), and PACs (379.43 ± 12.44 mg/g) was quantified using UV-Vis assays. Use of HPLC-ESI-MS/MS revealed the presence of 5 flavanols (100.77 ± 3.90 mg g−1 d.wt), 11 flavonols (59.96 ± 1.83 mg g−1 d.wt), and 8 anthocyanins (46.96 ± 1.59 mg g−1 d.wt), whereas MALDI-TOF MS showed that SP4TM contains PACs with one or more type-A interflavan bonds at each degree of polymerization. Regarding antioxidant properties, LUCS technology on HepG2 cells evidenced the ability of SP4TM to neutralize intracellular free radicals, inhibit membrane lipid peroxidation, quench H2O2, and reduce free radicals mainly through chelating mechanism, as demonstrated by a higher FRAP value (2643.28 ± 39.86 mmol/g) compared with ABTS (139.92 ± 6.16 mmol/g) and DPPH (89.51 ± 3.91 mmol/g). Finally, the SP4TM type-A PAC content strongly prevented bacterial adhesion of P-fimbriated uropathogenic Escherichia coli (0.23 mg/mL). In conclusion, SP4TM has a strong antioxidant capacity involving multitarget mechanisms and is a potential supplement to fight urinary tract infections due to its ability to inhibit uropathogenic E. coli adhesion.
Collapse
|
5
|
Zhou S, Zhao A, Wu Y, Mi Y, Zhang C. Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Front Cell Dev Biol 2022; 10:762228. [PMID: 35242756 PMCID: PMC8886245 DOI: 10.3389/fcell.2022.762228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
7
|
Li W, He Y, Zhao H, Peng L, Li J, Rui R, Ju S. Grape Seed Proanthocyanidin Ameliorates FB 1-Induced Meiotic Defects in Porcine Oocytes. Toxins (Basel) 2021; 13:toxins13120841. [PMID: 34941679 PMCID: PMC8706835 DOI: 10.3390/toxins13120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Fumonisin B1 (FB1), as the most prevalent and toxic fumonisin, poses a health threat to humans and animals. The cytotoxicity of FB1 is closely related to oxidative stress and apoptosis. The purpose of this study is to explore whether Grape seed proanthocyanidin (GSP), a natural antioxidant, could alleviate the meiotic maturation defects of oocytes caused by FB1 exposure. Porcine cumulus oocyte complexes (COCs) were treated with 30 μM FB1 alone or cotreated with 100, 200 and 300 μM GSP during in vitro maturation for 44 h. The results show that 200 μM GSP cotreatment observably ameliorated the toxic effects of FB1 exposure, showing to be promoting first polar body extrusion and improving the subsequent cleavage rate and blastocyst development rate. Moreover, 200 μM GSP cotreatment restored cell cycle progression, reduced the proportion of aberrant spindles, improved actin distribution and protected mitochondrial function in FB1-exposed oocytes. Furthermore, reactive oxygen species (ROS) generation was significantly decreased and the mRNA levels of CAT, SOD2 and GSH-PX were obviously increased in the 200 μM GSP cotreatment group. Notably, the incidence of early apoptosis and autophagy level were also significantly decreased after GSP cotreatment and the mRNA expression levels of BAX, CASPASE3, LC3 and ATG5 were markedly decreased, whereas BCL2 and mTOR were observably increased in the oocytes after GSP cotreatment. Together, these results indicate that GSP could exert significant preventive effects on FB1-induced oocyte defects by ameliorating oxidative stress through repairing mitochondrial dysfunction.
Collapse
|
8
|
Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch Pharm Res 2021; 44:1051-1061. [PMID: 34743301 DOI: 10.1007/s12272-021-01360-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are critical events that contribute to the pathogenesis of vascular diseases such as atherosclerosis, restenosis, and hypertension. Recent findings have revealed that VSMC phenotype switching is associated with metabolic switch, which is related to the role of mitochondria. Mitochondrial dynamics are directly associated with mitochondrial function and cellular homeostasis. Interestingly, it has been suggested that mitochondrial dynamics and mitophagy play crucial roles in the regulation of VSMC proliferation and migration through various mechanisms. Especially, dynamin-related protein-1 and mitofusion-2 are two main molecules that play a key role in regulating mitochondrial dynamics to induce VSMC proliferation and migration. Therefore, this review describes the function and role of mitochondrial dynamics and mitophagy in VSMC homeostasis as well as the underlying mechanisms. This will provide insight into the development of innovative approaches to treat atherosclerosis.
Collapse
|
9
|
Zhou M, Chen X, Gao C, Ni L, Wang X, Zhang W, Ren S. Catalytic hydrogenolysis of larix bark proanthocyanidins in ionic liquids produces UV blockers with potential for use in cosmetics. RSC Adv 2021; 11:30078-30087. [PMID: 35480246 PMCID: PMC9040893 DOI: 10.1039/d1ra03197j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The bark of larix, a major tree species in the coniferous forests of China's Greater Khingan Mountains, is typically treated as waste. The bark is, however, rich in flavonoids, known as proanthocyanidins, although their high degree of polymerization and high molecular weight reduce their biological activity and potential applications. Ionic liquids, a new type of “green solvent”, characterized by low vapor pressure and good stability, have been developed and used as new solvents for naturally occurring macromolecules. Here, we used 1-butyl-3-methylimidazole chloride ([BMIM]Cl) as the ionic solvent to reduce the degree of polymerization of larix bark proanthocyanidins by Pd/C-catalyzed hydrogenolysis. The optimal reaction conditions, determined using an orthogonal experimental design, were: reaction temperature, 90 °C; reaction time, 1.5 h; catalyst loading, 4 g L−1 (Pd/C: [BMIM]Cl); and hydrogen pressure, 2.5 MPa. Characterization of the reaction products by UV-Vis and IR spectroscopy and gel permeation chromatographys showed that they retained the proanthocyanidin structure. We showed that whilst both the native and depolymerized proanthocyanidins were able to block UV light when added to commercially available skin creams and sunscreens, the depolymerized proanthocyanidins were more effective at a given concentration. This study expands the applications of a new “green” ionic liquid solvent, provides a technical foundation for the low-cost depolymerization of larix bark proanthocyanidins, and also explores a potential high-value use for waste larix bark as the source of a UV-blocking additive for cosmetics. Oligomeric proanthocyanidins with excellent UV resistance were prepared by hydrogenolysis in ionic liquids.![]()
Collapse
Affiliation(s)
- Meng Zhou
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Xiaoxia Chen
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Chong Gao
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Liwen Ni
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Xuechun Wang
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Wudi Zhang
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Shixue Ren
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University China.,College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| |
Collapse
|