1
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
2
|
Huang S, Yang X, Gao Y, Huang H, Li T, Li M, Wu F, Yang H, Li C. Multifunctional nano co-delivery system for efficiently eliminating neuroblastoma by overcoming cancer heterogeneity. Biomed Mater 2024; 19:065033. [PMID: 39419089 DOI: 10.1088/1748-605x/ad8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The high heterogeneity of neuroblastoma (NB) is currently the main challenge in clinical treatment, impeding the complete eradication of the tumor through monotherapy alone. In this study, we propose a combination strategy using a targeted nano co-delivery system (ADRF@Ag2Se) comprising phototheranostic agents, differentiation inducers and chemotherapy drugs for sequential therapy of NB. Upon intravenous injection, ADRF@Ag2Se demonstrates effective tumor targeting by the specific binding of AF7P to MMP14, which is overexpressed on the surface of NB cells. Subsequent implementation of local photothermal therapy (PTT) leverages the robust photothermal conversion capabilities of the amphiphilic photothermal reagent PF. This is followed by the temperature-triggered release of differentiation-inducing agent 13-cis-retinoic acid and chemo-drug doxorubicin to synergistically eliminate the residual lesions. This nanotherapeutic strategy facilitatesin vivotargeted delivery and PTT under the supervision of NIR-II fluorescence, and it also enhances the chemotherapeutic response through differentiation induction of poorly differentiated cancer cells. In the NB tumor model, this co-delivery strategy effectively inhibited tumor growth and significantly prolonged the survival of the mice.
Collapse
Affiliation(s)
- Shungen Huang
- Pediatric Surgery, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Xian Yang
- Pediatric Surgery, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yajuan Gao
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Haoying Huang
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Tuanwei Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Meng Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Feng Wu
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Hongcao Yang
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chunyan Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
3
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Zhang X, Zhao Y, Teng Z, Sun T, Tao J, Wu J, Wang Y, Qiu F, Wang F. Combination of Losartan and Platinum Nanoparticles with Photothermal Therapy Induces Immunogenic Cell Death Effective Against Neuroblastoma. Int J Nanomedicine 2024; 19:10213-10226. [PMID: 39399827 PMCID: PMC11471086 DOI: 10.2147/ijn.s467968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Photothermal therapy (PTT) is a promising therapeutic procedure with minimal side effects, which can not only kill tumor directly but also cause immunogenic cell death (ICD). However, most solid tumors, including neuroblastoma, are abundant in fibroblasts, which limit the penetration and delivery of nanoparticles. Losartan is an antihypertensive drug approved by the FDA, and it has been proved to have the effect of breaking down excessive ECM network. Methods In this study, we investigated the application and potential mechanism of the combination of mesoporous platinum nanoparticles (MPNs) and losartan in the PTT of neuroblastoma by establishing neuroblastoma models in vitro and in vivo. Results Compared to the MPNs group without 808 nm laser irradiation, Neuro-2a cells pretreated with PTT and losartan showed lower survival rates, increased surface calreticulin, and higher release of HMGB1 and ATP. The group also exhibited the highest anti-tumor efficacy in vivo, with a tumor suppression ratio of approximately 80%. Meanwhile, we found that CD3+ T cells, CD4+ T cells and CD8+ T cells from the peripheral blood of experimental group mice were significantly higher than control groups, and CD8+PD-1+ cells were significantly lower than those in MPNs + Los group and Los + laser group. And the expression of PD-1 and α-SMA in Neuro-2a tumors tissue was reduced. Furthermore, losartan could reduce damage of liver function caused by MPNs and laser treatment. Conclusion This study demonstrated that losartan-induced fibroblasts ablation increased the penetration of MPNs into tumors. Enhanced penetration allowed PTT to kill more tumor cells and synergistically activate immune cells, leading to ICD, indicating the great promise of the strategy for treating neuroblastoma in vivo.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, 210018, People's Republic of China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Tangyao Sun
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Jun Tao
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Jiang Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Yu Wang
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Fan Qiu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
5
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity. Nanomedicine (Lond) 2024; 19:2049-2064. [PMID: 39225150 PMCID: PMC11485692 DOI: 10.1080/17435889.2024.2389770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.
Collapse
Affiliation(s)
- Jacob A Medina
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Debbie K Ledezma
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Joshua Ghofrani
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Jie Chen
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | - Samantha J Chin
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
| | | | - Norman H Lee
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| | - Rohan Fernandes
- Integrated Biomedical Sciences Program, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
- The George Washington Cancer Center, George Washington University, WA 20052, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, WA 20037, USA
| |
Collapse
|
7
|
Sweeney EE, Sekhri P, Muniraj N, Chen J, Feng S, Terao J, Chin SJ, Schmidt DE, Bollard CM, Cruz CRY, Fernandes R. Photothermal Prussian blue nanoparticles generate potent multi-targeted tumor-specific T cells as an adoptive cell therapy. Bioeng Transl Med 2024; 9:e10639. [PMID: 38818122 PMCID: PMC11135148 DOI: 10.1002/btm2.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFNγ and TNFα and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFNγ and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.
Collapse
Affiliation(s)
- Elizabeth E. Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Palak Sekhri
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Nethaji Muniraj
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jie Chen
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Sally Feng
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Joshua Terao
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Samantha J. Chin
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Danielle E. Schmidt
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Catherine M. Bollard
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Conrad Russell Y. Cruz
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- The Integrated Biomedical Sciences Program, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Rohan Fernandes
- Center for Cancer and Immunology ResearchChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- George Washington Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
8
|
Zhang H, Hu Z, Wang J, Xu J, Wang X, Zang G, Qiu J, Wang G. Shear stress regulation of nanoparticle uptake in vascular endothelial cells. Regen Biomater 2023; 10:rbad047. [PMID: 37351014 PMCID: PMC10281962 DOI: 10.1093/rb/rbad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 06/24/2023] Open
Abstract
Nanoparticles (NPs) hold tremendous targeting potential in cardiovascular disease and regenerative medicine, and exciting clinical applications are coming into light. Vascular endothelial cells (ECs) exposure to different magnitudes and patterns of shear stress (SS) generated by blood flow could engulf NPs in the blood. However, an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies. Here, the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted. The mechanism of SS affecting NP uptake through regulating the cellular ROS level, endothelial glycocalyx and membrane fluidity is summarized, and the molecules containing clathrin and caveolin in the engulfment process are elucidated. SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine. This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.
Collapse
Affiliation(s)
- Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Juhui Qiu
- Correspondence address: E-mail: (G.W.); (J.Q.)
| | - Guixue Wang
- Correspondence address: E-mail: (G.W.); (J.Q.)
| |
Collapse
|
9
|
Tang K, Li X, Hu Y, Zhang X, Lu N, Fang Q, Shao J, Li S, Xiu W, Song Y, Yang D, Zhang J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater Sci 2023. [PMID: 37067845 DOI: 10.1039/d3bm00509g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaonan Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
10
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
11
|
Balakrishnan PB, Holmberg CS, Ledezma DK, Bosque A, Fernandes R. PolyIC-coated Prussian blue nanoparticles as a dual-mode HIV latency reversing agent. Nanomedicine (Lond) 2022; 17:2159-2171. [PMID: 36734362 PMCID: PMC10061244 DOI: 10.2217/nnm-2022-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Aim: To investigate Prussian blue nanoparticles (PBNPs) coated with the synthetic analog of dsRNA polyinosinic-polycytidylic acid (polyIC) for their ability to function as HIV latency reversing agents. Methods: A layer-by-layer method was used to synthesize polyIC-coated PBNPs (polyIC-PBNPs). PolyIC-PBNPs were stable and monodisperse, maintained the native absorbance properties of both polyIC and PBNPs and were obtained with high nanoparticle collection yield and polyIC attachment efficiencies. Results: PolyIC-PBNPs were more effective in reactivating latent HIV than free polyIC in a cell model of HIV latency. Furthermore, polyIC-PBNPs were more effective in promoting immune activation than free polyIC in CD4 and CD8 T cells. Conclusion: PBNPs function as efficient carriers of nucleic acids to directly reverse HIV latency and enhance immune activation.
Collapse
Affiliation(s)
- Preethi B Balakrishnan
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
| | - Carissa S Holmberg
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Debbie K Ledezma
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
| | - Alberto Bosque
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Rohan Fernandes
- Department of Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- The George Washington Cancer Center, The George Washington University, Science & Engineering Hall, Ste 8300, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, The George Washington University, 2300 I Street NW, Ross Hall, Room 561, Washington, DC 20037, USA
| |
Collapse
|
12
|
He Y, Chen R, Zhao C, Lu Q, Chen Z, Zhu H, Bu Q, Wang L, He H. Design of Near-Infrared-Triggered Cellulose Nanocrystal-Based In Situ Intelligent Wound Dressings for Drug-Resistant Bacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51630-51644. [PMID: 36375077 DOI: 10.1021/acsami.2c13203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Postoperative infected wound complications caused by residual tumor cells, bacterial biofilms, and drug-resistant bacteria have become the main challenge in postsurgical skin regeneration. Herein, a bionic cellulose nanocrystal (CNC)-based in situ intelligent wound dressing with near-infrared (NIR)-, temperature-, and pH-responsive functions was designed by using NIR-responsive CNC as the network skeleton, dynamic imine bonds between dialdehyde cellulose nanocrystals and doxorubicin, chitosan oligosaccharide as the pH-responsive switch, and temperature-sensitive poly(N-isopropyl acrylamide) as the temperature-responsive in situ formation switch. The as-prepared wound dressing with the intertwining three-dimensional (3D) network structure possessed high drug loadability of indocyanine green (30 mg/g) and doxorubicin (420 mg/g) simultaneously. The temperature-, NIR-, and pH-responsive switches endowed the wound dressing with controllable on-demand drug release behavior. In particular, the temperature switch endowed the dressing with a shape-adaptable ability on irregularly infected wounds. Interestingly, the wound dressing showed excellent antitumor activity for A375 tumor cells, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and bacterial biofilm removal ability. Therefore, the developed wound dressing can provide an ideal synergistic treatment strategy combined with chemotherapy and photodynamic and photothermal therapy for postoperative drug-resistant bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yonghui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| |
Collapse
|
13
|
Ledezma DK, Balakrishnan PB, Shukla A, Medina JA, Chen J, Oakley E, Bollard CM, Shafirstein G, Miscuglio M, Fernandes R. Interstitial Photothermal Therapy Generates Durable Treatment Responses in Neuroblastoma. Adv Healthc Mater 2022; 11:e2201084. [PMID: 35943173 PMCID: PMC9588730 DOI: 10.1002/adhm.202201084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Photothermal therapy (PTT) represents a promising modality for tumor control typically using infrared light-responsive nanoparticles illuminated by a wavelength-matched external laser. However, due to the constraints of light penetration, PTT is generally restricted to superficially accessible tumors. With the goal of extending the benefits of PTT to all tumor settings, interstitial PTT (I-PTT) is evaluated by the photothermal activation of intratumorally administered Prussian blue nanoparticles with a laser fiber positioned interstitially within the tumor. This interstitial fiber, which is fitted with a terminal diffuser, distributes light within the tumor microenvironment from the "inside-out" as compared to from the "outside-in" traditionally observed during superficially administered PTT (S-PTT). I-PTT improves the heating efficiency and heat distribution within a target treatment area compared to S-PTT. Additionally, I-PTT generates increased cytotoxicity and thermal damage at equivalent thermal doses, and elicits immunogenic cell death at lower thermal doses in targeted neuroblastoma tumor cells compared to S-PTT. In vivo, I-PTT induces significantly higher long-term tumor regression, lower rates of tumor recurrence, and improved long-term survival in multiple syngeneic murine models of neuroblastoma. This study highlights the significantly enhanced therapeutic benefit of I-PTT compared to traditional S-PTT as a promising treatment modality for solid tumors.
Collapse
Affiliation(s)
- Debbie K. Ledezma
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- The Institute for Biomedical SciencesThe George Washington University2300 Eye Street NW, Ross Hall Room 561WashingtonDC20037USA
| | - Preethi B. Balakrishnan
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Anshi Shukla
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Jacob A. Medina
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- The Institute for Biomedical SciencesThe George Washington University2300 Eye Street NW, Ross Hall Room 561WashingtonDC20037USA
| | - Jie Chen
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
| | - Emily Oakley
- Photodynamic Therapy CenterRoswell Park Comprehensive Cancer CenterDepartment of Cell Stress BiologyRoswell Park, Elm and Carlton StreetsBuffaloNY14263USA
| | - Catherine M. Bollard
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- Center for Cancer and Immunology ResearchChildren's National Hospital111 Michigan Ave NWWashingtonDC20010USA
| | - Gal Shafirstein
- Photodynamic Therapy CenterRoswell Park Comprehensive Cancer CenterDepartment of Cell Stress BiologyRoswell Park, Elm and Carlton StreetsBuffaloNY14263USA
| | - Mario Miscuglio
- Department of Electrical and Computer EngineeringThe George Washington University800 22nd St NW, 5000 Science and Engineering HallWashingtonDC20052USA
| | - Rohan Fernandes
- The George Washington Cancer CenterThe George Washington University800 22nd St NW, 8300 Science and Engineering HallWashingtonDC20052USA
- Department of MedicineThe George Washington University2150 Pennsylvania Avenue, NW, Suite 8‐416WashingtonDC20037USA
| |
Collapse
|
14
|
Bonan NF, Ledezma DK, Tovar MA, Balakrishnan PB, Fernandes R. Anti-Fn14-Conjugated Prussian Blue Nanoparticles as a Targeted Photothermal Therapy Agent for Glioblastoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2645. [PMID: 35957076 PMCID: PMC9370342 DOI: 10.3390/nano12152645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Prussian blue nanoparticles (PBNPs) are effective photothermal therapy (PTT) agents: they absorb near-infrared radiation and reemit it as heat via phonon-phonon relaxations that, in the presence of tumors, can induce thermal and immunogenic cell death. However, in the context of central nervous system (CNS) tumors, the off-target effects of PTT have the potential to result in injury to healthy CNS tissue. Motivated by this need for targeted PTT agents for CNS tumors, we present a PBNP formulation that targets fibroblast growth factor-inducible 14 (Fn14)-expressing glioblastoma cell lines. We conjugated an antibody targeting Fn14, a receptor abundantly expressed on many glioblastomas but near absent on healthy CNS tissue, to PBNPs (aFn14-PBNPs). We measured the attachment efficiency of aFn14 onto PBNPs, the size and stability of aFn14-PBNPs, and the ability of aFn14-PBNPs to induce thermal and immunogenic cell death and target and treat glioblastoma tumor cells in vitro. aFn14 remained stably conjugated to the PBNPs for at least 21 days. Further, PTT with aFn14-PBNPs induced thermal and immunogenic cell death in glioblastoma tumor cells. However, in a targeted treatment assay, PTT was only effective in killing glioblastoma tumor cells when using aFn14-PBNPs, not when using PBNPs alone. Our methodology is novel in its targeting moiety, tumor application, and combination with PTT. To the best of our knowledge, PBNPs have not been investigated as a targeted PTT agent in glioblastoma via conjugation to aFn14. Our results demonstrate a novel and effective method for delivering targeted PTT to aFn14-expressing tumor cells via aFn14 conjugation to PBNPs.
Collapse
Affiliation(s)
- Nicole F. Bonan
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
| | - Debbie K. Ledezma
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
| | - Matthew A. Tovar
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Preethi B. Balakrishnan
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
| | - Rohan Fernandes
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- Department of Medicine, George Washington University, Washington, DC 20052, USA
| |
Collapse
|