1
|
Choudhury B, Singh YR, Khaire KC, Ahmed N, Sharma K, Fontes CMGA, Goyal A. Cellulosomal endo-1,4-β-D-xylanase (AcXyn30B_12) from Acetivibrio clariflavus acts synergistically with xylobiohydrolase (AcGH30A) upon the hydrolysis of complex carbohydrates. Int J Biol Macromol 2025; 306:141620. [PMID: 40049474 DOI: 10.1016/j.ijbiomac.2025.141620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
AcGH30A and AcXyn30B_12 are two of the most abundant enzymes in the cellulosome of the thermophilic anaerobe Acetivibrio clariflavus. Their surprising abundance within the glycolytic repertoire of this highly efficient microorganism, active in sewage sludge ecosystems, suggests a cooperative role in the hydrolysis of complex carbohydrates. Here, we cloned, expressed and characterized the endo-β-1,4-xylanase AcXyn30B_12, which has a molecular weight of ~74 kDa and displays optimal activity at pH 5.5 and 70 °C. AcXyn30B_12 exhibited broad substrate specificity, with the highest catalytic efficiency against partially acetylated birchwood xylan (PABX), yielding a Vmax of 133.3 U/mg and a Km of 0.9 mg/mL. AcXyn30B_12 activity was enhanced by Ca2+ (10 %) and Mg2+ (7.3 %) ions. The enzyme also showed notable thermostability and pH tolerance, maintaining activity up to 60 °C and within a pH range of 4.5-8.0. Time-course hydrolysis experiments revealed the ability of AcXyn30B_12 to release a variety of xylo-oligosaccharides (from xylopentaose to xylobiose) and xylose from PABX, confirming both its endo and exo-acting mechanisms. Additionally, AcXyn30B_12 effectively degraded lignocellulosic biomass, releasing significant amounts of xylo-oligosaccharides and xylose from complex substrates. In contrast, AcGH30A, previously characterized as an exo-xylobiohydrolase, removes xylobiose from non-reducing ends of xylan and xylo-oligosaccharides. Our experiments demonstrate the synergistic action of AcGH30A and AcXyn30B_12 in complex carbohydrate hydrolysis, with AcXyn30B_12 generating the non-reducing ends that serve as substrates for AcGH30A. This enzyme synergy underscores the potential industrial applications of these enzymes in high-temperature processes, including prebiotic production, bioethanol generation and the paper and pulp industries.
Collapse
Affiliation(s)
- Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Yumnam Robinson Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Kaustubh Chandrakant Khaire
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazneen Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Carlos M G A Fontes
- NZYTech-Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, 1649-038 Lisbon, Portugal; CIISA-Faculdade de MedicinaVeterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Zhang J, Qin Y, Wang Q, Liu S, Zhou J, He B, Liang X, Xian L, Wu J. Gene cloning, expression, and characterization of two endo-xylanases from Bacillus velezensis and Streptomyces rochei, and their application in xylooligosaccharide production. Front Microbiol 2023; 14:1292726. [PMID: 38173671 PMCID: PMC10762781 DOI: 10.3389/fmicb.2023.1292726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Endo-xylanase hydrolyzing xylan in cellulosic residues releasing xylobiose as the major product at neutral pH are desirable in the substitute sweeteners industry. In this study, two endo-xylanases were obtained from Streptomyces rochei and Bacillus velezensis. SrocXyn10 showed the highest identity of 77.22%, with a reported endo-xylanase. The optimum reaction temperature and pH of rSrocXyn10-Ec were pH 7.0 and 60°C, with remarkable stability at 45°C or pHs ranging from 4.5 to 11.0. rBvelXyn11-Ec was most active at pH 6.0 and 50°C, and was stable at 35°C or pH 3.5 to 10.5. Both rSrocXyn10-Ec and rBvelXyn11-Ec showed specific enzyme activities on wheat arabinoxylan (685.83 ± 13.82 and 2809.89 ± 21.26 U/mg, respectively), with no enzyme activity on non-xylan substrates. The Vmax of rSrocXyn10-Ec and rBvelXyn11-Ec were 467.86 U mg-1 and 3067.68 U mg-1, respectively. The determined Km values of rSrocXyn10-Ec and rBvelXyn11-Ec were 3.08 g L-1 and 1.45 g L-1, respectively. The predominant product of the hydrolysis of alkaline extracts from bagasse, corncob, and bamboo by rSrocXyn10-Ec and rBvelXyn11-Ec were xylooligosaccharides. Interestingly, the xylobiose content in hydrolysates by rSrocXyn10-Ec was approximately 80%, which is higher than most reported endo-xylanases. rSrocXyn10-Ec and rBvelXyn11-Ec could be excellent candidates to produce xylooligosaccharides at neutral/near-neutral pHs. rSrocXyn10-Ec also has potential value in the production of xylobiose as a substitute sweetener.
Collapse
Affiliation(s)
- Jing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan Qin
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Sijia Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jin Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoxiang He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xinquan Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Liang Xian
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| | - Junhua Wu
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
3
|
Liu Z, Wen S, Wu G, Wu H. Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Bai L, Kim J, Son KH, Chung CW, Shin DH, Ku BH, Kim DY, Park HY. Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13. Biomolecules 2021; 11:1735. [PMID: 34827733 PMCID: PMC8615386 DOI: 10.3390/biom11111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Endo-type chitinase is the principal enzyme involved in the breakdown of N-acetyl-d-glucosamine-based oligomeric and polymeric materials through hydrolysis. The gene (966-bp) encoding a novel endo-type chitinase (ChiJ), which is comprised of an N-terminal chitin-binding domain type 3 and a C-terminal catalytic glycoside hydrolase family 19 domain, was identified from a fibrolytic intestinal symbiont of the earthworm Eisenia fetida, Cellulosimicrobium funkei HY-13. The highest endochitinase activity of the recombinant enzyme (rChiJ: 30.0 kDa) toward colloidal shrimp shell chitin was found at pH 5.5 and 55 °C and was considerably stable in a wide pH range (3.5-11.0). The enzyme exhibited the highest biocatalytic activity (338.8 U/mg) toward ethylene glycol chitin, preferentially degrading chitin polymers in the following order: ethylene glycol chitin > colloidal shrimp shell chitin > colloidal crab shell chitin. The enzymatic hydrolysis of N-acetyl-β-d-chitooligosaccharides with a degree of polymerization from two to six and colloidal shrimp shell chitin yielded primarily N,N'-diacetyl-β-d-chitobiose together with a small amount of N-acetyl-d-glucosamine. The high chitin-degrading ability of inverting rChiJ with broad pH stability suggests that it can be exploited as a suitable biocatalyst for the preparation of N,N'-diacetyl-β-d-chitobiose, which has been shown to alleviate metabolic dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- Lu Bai
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Jonghoon Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Chung-Wook Chung
- Department of Biological Sciences, Andong National University, Andong 36729, Korea;
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Do Young Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Ho-Yong Park
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| |
Collapse
|
5
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
6
|
Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433. Biomolecules 2021; 11:biom11050680. [PMID: 33946575 PMCID: PMC8147214 DOI: 10.3390/biom11050680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Endo-β-1,4-xylanase is a key enzyme in the degradation of β-1,4-d-xylan polysaccharides through hydrolysis. A glycoside hydrolase family 10 (GH10) endo-β-1,4-xylanase (XylR) from Duganella sp. PAMC 27433, an Antarctic soil bacterium, was identified and functionally characterized. The XylR gene (1122-bp) encoded an acidic protein containing a single catalytic GH10 domain that was 86% identical to that of an uncultured bacterium BLR13 endo-β-1,4-xylanase (ACN58881). The recombinant enzyme (rXylR: 42.0 kDa) showed the highest beechwood xylan-degrading activity at pH 5.5 and 40 °C, and displayed 12% of its maximum activity even at 4 °C. rXylR was not only almost completely inhibited by 5 mM N-bromosuccinimide or metal ions (each 1 mM) including Hg2+, Ca2+, or Cu2+ but also significantly suppressed by 1 mM Ni2+, Zn2+, or Fe2+. However, its enzyme activity was upregulated (>1.4-fold) in the presence of 0.5% Triton X-100 or Tween 80. The specific activities of rXylR toward beechwood xylan, birchwood xylan, oat spelts xylan, and p-nitrophenyl-β-d-cellobioside were 274.7, 103.2, 35.6, and 365.1 U/mg, respectively. Enzymatic hydrolysis of birchwood xylan and d-xylooligosaccharides yielded d-xylose and d-xylobiose as the end products. The results of the present study suggest that rXylR is a novel cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase.
Collapse
|
7
|
Liu L, Xu M, Cao Y, Wang H, Shao J, Xu M, Zhang Y, Wang Y, Zhang W, Meng X, Liu W. Biochemical Characterization of Xylanases from Streptomyces sp. B6 and Their Application in the Xylooligosaccharide Production from Viscose Fiber Production Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3184-3194. [PMID: 32105462 DOI: 10.1021/acs.jafc.9b06704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enzymatic hydrolysis of xylan represents a promising way to produce xylooligosaccharide (XOS), which is a novel ingredient in functional food. However, the recalcitrance of xylan in natural lignocellulosic biomass entails effective and robust xylanases. In the present study, we reported the isolation of a thermophilic Streptomyces sp. B6 from mushroom compost producing high xylanase activity. Two xylanases of Streptomyces sp. B6 belonging to GH10 (XynST10) and GH11 (XynST11) families were thus identified and biochemically characterized to be robust enzymes with high alkaline- and thermostability. Direct hydrolysis of neutralized viscose fiber production waste using XynST10 and XynST11 showed that while XynST10 produced 23.22 g/L XOS with a degree of polymerization (DP) of 2-4 and 9.27 g/L xylose, XynST11 produced much less xylose (1.19 g/L) and a higher amounts of XOS with a DP = 2-4 (28.29 g/L). Thus, XynST11 holds great potential for the production of XOS from agricultural and industrial waste.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Mingyuan Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Hai Wang
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Jing Shao
- Qingdao Vland Biotech Company Group, No. 29 Miaoling Road, Qingdao 266061, People's Republic of China
| | - Meiqing Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Yuancheng Zhang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Yunhe Wang
- Leling Shengli New Energy Company, Limited, Yangan, Leling, Dezhou 253614, People's Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, People's Republic of China
| |
Collapse
|
8
|
Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 2020; 10:3864. [PMID: 32123275 PMCID: PMC7052144 DOI: 10.1038/s41598-020-60850-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli. Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
Collapse
|
9
|
Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front Microbiol 2019; 10:2187. [PMID: 31632361 PMCID: PMC6779837 DOI: 10.3389/fmicb.2019.02187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Plastics, such as the polyethylene terephthalate (PET), are widely used for various industrial applications, due to their physicochemical properties which are particularly useful in the packaging industry. However, due to improper plastic waste management and difficulties in recycling, post-consumer plastic waste has become a pressing issue for both the environment and for human health. Hence, novel technologies and methods of processing plastic waste are required to address these issues. Enzymatic-assisted hydrolysis of synthetic polymers has been proposed as a potentially more efficient and environment-friendly alternative to the currently employed methods. Recently, a number of PET hydrolases have been described, and in particular a PETase derived from Ideonella sakaiensis 201-F6 (IsPETase), which appears to be the most efficient and substrate-specific bacterial PET hydrolase enzyme discovered to date. In order to further investigate this class of PETase-like enzymes, we employed an in silico-based screening approach on the biotechnologically relevant genus Streptomyces, including terrestrial and marine isolates; in a search for potential PETase homologs. From a total of 52 genomes analyzed, we were able to identify three potential PETase-like enzymes, all of which were derived from marine-sponge associated Streptomyces isolates. A candidate PETase-like gene (SM14est) was identified in Streptomyces sp. SM14. Further in silico characterization of the SM14est protein sequence and its predicted three-dimensional structure were performed and compared to the well-characterized IsPETase. Both the serine hydrolase motif Gly-x1-Ser-x2-Gly and the catalytic triad Ser, Asp, His are conserved in both sequences. Molecular docking experiments indicated that the SM14est enzyme possessed the capacity to bind plastics as substrates. Finally, polyesterase activity was confirmed using a polycaprolactone (PCL) plate clearing assay which is a model substrate for the degradation of plastics; following heterologous expression of SM14est in Escherichia coli, with secretion being facilitated by the native Streptomyces signal peptide. These findings provide further insights into this important class of PETase-like enzymes.
Collapse
Affiliation(s)
| | | | - Stephen A Jackson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Xian L, Li Z, Tang AX, Qin YM, Li QY, Liu HB, Liu YY. A novel neutral and thermophilic endoxylanase from Streptomyces ipomoeae efficiently produced xylobiose from agricultural and forestry residues. BIORESOURCE TECHNOLOGY 2019; 285:121293. [PMID: 30999191 DOI: 10.1016/j.biortech.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Endoxylanases capable of producing high ratios of xylobiose from agricultural and forestry residues in neutral and high temperature conditions are attractive for the prebiotic and alternative sweetener industries. In this study, a putative glycosyl hydrolase gene from Streptomyces ipomoeae was cloned and expressed in Escherichia coli. The recombinant enzyme, named as SipoEnXyn10A, hydrolyzed beechwood xylan in endo-action mode releasing xylobiose as its main end product. It was most active at pH 6.5 and 75-80 °C and showed remarkable stability at 65 °C. The xylobiose yield from 10 g corncob and moso bamboo reached 1.123 ± 0.021 and 0.229 ± 0.005 g, respectively, at pH 6.5 and 70 °C, whichwas higher than other reports using the same material. Moreover, high ratios of xylobiose in the xylose-based product of about 85% were obtained from corncob, moso bamboo sawdust, cassava stem and Chinese fir sawdust. These results demonstrated that SipoEnXyn10A has potential for industrial application.
Collapse
Affiliation(s)
- Liang Xian
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Yi-Min Qin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Qing-Yun Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China.
| |
Collapse
|
11
|
Draft genome of Streptomyces sp. strain 130 and functional analysis of extracellular enzyme producing genes. Mol Biol Rep 2019; 46:5063-5071. [DOI: 10.1007/s11033-019-04960-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022]
|
12
|
Myco-Degradation of Lignocellulose: An Update on the Reaction Mechanism and Production of Lignocellulolytic Enzymes by Fungi. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
14
|
Kim DY, Lee SH, Lee MJ, Cho HY, Lee JS, Rhee YH, Shin DH, Son KH, Park HY. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. Int J Biol Macromol 2017; 106:620-628. [PMID: 28813686 DOI: 10.1016/j.ijbiomac.2017.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
The gene (1488-bp) encoding a novel GH10 endo-β-1,4-xylanase (XylM) consisting of an N-terminal catalytic GH10 domain and a C-terminal ricin-type β-trefoil lectin domain-like (RICIN) domain was identified from Luteimicrobium xylanilyticum HY-24. The GH10 domain of XylM was 72% identical to that of Micromonospora lupini endo-β-1,4-xylanase and the RICIN domain was 67% identical to that of Actinospica robiniae hypothetical protein. The recombinant enzyme (rXylM: 49kDa) exhibited maximum activity toward beechwood xylan at 65°C and pH 6.0, while the optimum temperature and pH of its C-terminal truncated mutant (rXylM△RICIN: 35kDa) were 45°C and 5.0, respectively. After pre-incubation of 1h at 60°C, rXylM retained over 80% of its initial activity, but the thermostability of rXylM△RICIN was sharply decreased at temperatures exceeding 40°C. The specific activity (254.1Umg-1) of rXylM toward oat spelts xylan was 3.4-fold higher than that (74.8Umg-1) of rXylM△RICIN when the same substrate was used. rXylM displayed superior binding capacities to lignin and insoluble polysaccharides compared to rXylM△RICIN. Enzymatic hydrolysis of β-1,4-d-xylooligosaccharides (X3-X6) and birchwood xylan yielded X3 as the major product. The results suggest that the RICIN domain in XylM might play an important role in substrate-binding and biocatalysis.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sun Hwa Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ji Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Han-Young Cho
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong Suk Lee
- Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Republic of Korea
| | - Young Ha Rhee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Republic of Korea
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Ho-Yong Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Molecular Characterization of Xylobiose- and Xylopentaose-Producing β-1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2). Appl Biochem Biotechnol 2016; 180:349-60. [DOI: 10.1007/s12010-016-2103-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/24/2016] [Indexed: 01/29/2023]
|
16
|
Kim DY, Lee MJ, Cho HY, Lee JS, Lee MH, Chung CW, Shin DH, Rhee YH, Son KH, Park HY. Genetic and functional characterization of an extracellular modular GH6 endo-β-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Antonie van Leeuwenhoek 2015; 109:1-12. [PMID: 26481128 DOI: 10.1007/s10482-015-0604-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The gene (1608-bp) encoding a GH6 endo-β-1,4-glucanase (CelL) from the earthworm-symbiotic bacterium Cellulosimicrobium funkei HY-13 was cloned from its whole genome sequence, expressed recombinantly, and biochemically characterized. CelL (56.0 kDa) is a modular enzyme consisting of an N-terminal catalytic GH6 domain (from Val57 to Pro396), which is 71 % identical to a GH6 protein (accession no.: WP_034662937) from Cellulomonas sp. KRMCY2, together with a C-terminal CBM 2 domain (from Cys429 to Cys532). The highest catalytic activity of CelL toward carboxymethylcellulose (CMC) was observed at 50 °C and pH 5.0, and was relatively stable at a broad pH range of 4.0-10.0. The enzyme was capable of efficiently hydrolyzing the cellulosic polymers in the order of barley β-1,3-1,4-D-glucan > CMC > lichenan > Avicel > konjac glucomannan. However, cellobiose, cellotriose, p-nitrophenyl derivatives of mono- and disaccharides, or structurally unrelated carbohydrate polymers including β-1,3-D-glucan, β-1,4-D-galactomannan, and β-1,4-D-xylan were not susceptible to CelL. The enzymatic hydrolysis of cellopentaose resulted in the production of a mixture of 68.6 % cellobiose and 31.4 % cellotriose but barley β-1,3-1,4-D-glucan was 100 % degraded to cellotriose by CelL. The enzyme strongly bound to Avicel, ivory nut mannan, and chitin but showed relatively weak binding affinity to lichenan, lignin, or poly(3-hydroxybutyrate) granules.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Min Ji Lee
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Han-Young Cho
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Jong Suk Lee
- Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, 443-270, Republic of Korea
| | - Mi-Hwa Lee
- Division of Metabolism and Functionality Research, Korea Food Research Institute (KFRI), Sungnam, 463-746, Republic of Korea
| | - Chung Wook Chung
- Department of Biological Sciences, Andong National University, Andong, 760-749, Republic of Korea
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon, 305-811, Republic of Korea
| | - Young Ha Rhee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Kwang-Hee Son
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.
| |
Collapse
|
17
|
Characterization of a Novel Xylanase Gene from Rumen Content of Hu Sheep. Appl Biochem Biotechnol 2015; 177:1424-36. [DOI: 10.1007/s12010-015-1823-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
18
|
High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae. Int J Mol Sci 2015. [PMID: 26197317 PMCID: PMC4519965 DOI: 10.3390/ijms160716545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95%) of glycosyl hydrolase families including GH2 (24 genes), GH8 (27 genes), GH10 (19 genes), GH11 (14 genes) and GH36 (17 genes) families was retrieved, and certain sequences of GH2 (10.61%), GH8 (3.33%), and GH11 (18.42%) families had <60% identities with known sequences in GenBank, indicating their novelty. Based on phylogenetic analysis, sequences from hemicellulase families were related to enzymes from Bacteroidetes and Firmicutes. Fragments from cellulase family were most associated with the phylum of Proteobacteria. Furthermore, a full-length endo-xylanase gene was obtained, and the enzyme exhibited activity over a broad range of pH levels. Our results indicate that there are large number of cellulolytic and xylanolytic bacteria in the hindgut of H. parallela larvae, and these symbiotic bacteria play an important role in the degradation of roots and other organic matter for the host insect.
Collapse
|