1
|
Conway de Macario E, Yohda M, Macario AJL, Robb FT. Bridging human chaperonopathies and microbial chaperonins. Commun Biol 2019; 2:103. [PMID: 30911678 PMCID: PMC6420498 DOI: 10.1038/s42003-019-0318-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperonins are molecular chaperones that play critical physiological roles, but they can be pathogenic. Malfunctional chaperonins cause chaperonopathies of great interest within various medical specialties. Although the clinical-genetic aspects of many chaperonopathies are known, the molecular mechanisms causing chaperonin failure and tissue lesions are poorly understood. Progress is necessary to improve treatment, and experimental models that mimic the human situation provide a promising solution. We present two models: one prokaryotic (the archaeon Pyrococcus furiosus) with eukaryotic-like chaperonins and one eukaryotic (Chaetomium thermophilum), both convenient for isolation-study of chaperonins, and report illustrative results pertaining to a pathogenic mutation of CCT5.
Collapse
Affiliation(s)
- Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo Japan
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Frank T. Robb
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD USA
| |
Collapse
|
2
|
An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 2017; 8:827. [PMID: 29018216 PMCID: PMC5635000 DOI: 10.1038/s41467-017-00980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches. Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sara E Rowland
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Jung-Hyun Na
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dario Spigolon
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Seung Kon Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA. .,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Conway de Macario E, Robb FT, Macario AJL. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts. Front Mol Biosci 2017; 3:84. [PMID: 28119916 PMCID: PMC5220055 DOI: 10.3389/fmolb.2016.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
All archaea have a chaperonin of Group II (thermosome) in their cytoplasm and some have also a chaperonin of Group I (GroEL; Cpn60; Hsp60). Conversely, all bacteria have GroEL, some in various copies, but only a few have, in addition, a chaperonin (tentatively designated Group III chaperonin) very similar to that occurring in all archaea, i.e., the thermosome subunit, and in the cytosol of eukaryotic cells, named CCT. Thus, nature offers a range of prokaryotic organisms that are potentially useful as experimental models to study the human CCT and its abnormalities. This is important because many diseases, the chaperonopathies, have been identified in which abnormal chaperones, including mutant CCT, are determinant etiologic-pathogenic factors and, therefore, research is needed to elucidate their pathologic features at the molecular level. Such research should lead to the clarification of the molecular mechanisms underlying the pathologic lesions observed in the tissues and organs of patients with chaperonopathies. Information on these key issues is necessary to make progress in diagnosis and treatment. Some of the archaeal organisms as well as some of the bacterial models suitable for studying molecular aspects pertinent to human mutant chaperones are discussed here, focusing on CCT. Results obtained with the archaeon Pyrococcus furiosus model to investigate the impact of a pathogenic CCT5 mutation on molecular properties and chaperoning functions are reviewed. The pathogenic mutation examined weakens the ability of the chaperonin subunit to form stable hexadecamers and as a consequence, the chaperoning functions of the complex are impaired. The future prospect is to find means for stabilizing the hexadecamer, which should lead to a recovering of chaperone function and the improving of lesions and clinical condition.
Collapse
Affiliation(s)
- Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Columbus Center; Institute of Marine and Environmental TechnologyBaltimore, MD, USA; Euro-Mediterranean Institute of Science and TechnologyPalermo, Italy
| | - Frank T Robb
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Columbus Center; Institute of Marine and Environmental TechnologyBaltimore, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College ParkRockville, MD, USA
| | - Alberto J L Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Columbus Center; Institute of Marine and Environmental TechnologyBaltimore, MD, USA; Euro-Mediterranean Institute of Science and TechnologyPalermo, Italy
| |
Collapse
|