1
|
Thim-Uam A, Chantawichitwong P, Phuengmaung P, Kaewduangduen W, Saisorn W, Kumpunya S, Pisitkun T, Pisitkun P, Leelahavanichkul A. Accelerating and protective effects toward cancer growth in cGAS and FcgRIIb deficient mice, respectively, an impact of macrophage polarization. Inflamm Res 2025; 74:69. [PMID: 40272597 DOI: 10.1007/s00011-025-02036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Due to the possible influence of inflammation and gut microbiota in cancers. METHODS Fc gamma receptor IIb deficient (FcGRIIb-/-) and cyclic GMP-AMP synthase deficient (cGAS-/-) mice, the model with hyperinflammation and hypo-inflammation, respectively, were subcutaneously injected with MC38 cells (a murine colon cancer cell line). RESULTS As such, the tumor burdens were most prominent in cGAS-/- mice, while FcGRIIb-/- mice demonstrated the least tumor sizes compared with wild-type (WT). Intra-tumoral mononuclear cells of FcGRIIb-/- (hematoxylin and eosin staining) were more prominent than other groups with the most dominant CD86-positive cells (mostly M1 proinflammatory macrophages) and the least CD206-positive cells (mostly M2 anti-inflammatory macrophages). While fecal microbiome analysis demonstrated a subtle difference among mouse strains with tumors at 24 days post-cancer injection, serum cytokines (TNF-α, IL-6, IL-1α, IFN-β, IFN-γ, IL-23, IL-12p70, GM-CSF, IL-27, and IL-17A) (fluorescence-encoded bead multiplex assay) and the expansion of immune cells in the spleens of FcGRIIb-/- mice (flow cytometry) were more prominent than others. With bone marrow-derived macrophages, prominent M1 (LPS) and M2 polarization (IL4 and cancer supernatant) in FcGRIIb-/- and cGAS-/- macrophages, respectively, were demonstrated using polymerase chain reaction and flow cytometry. The most prominent tumoricidal activity (percentage of F4/80-negative flexible780 viable dye-positive cells using flow cytometry) of LPS-stimulated FcGRIIb-/- macrophages compared with other groups supported dominant pro-inflammatory characteristics of FcGRIIb-/- macrophages. CONCLUSIONS In conclusion, the protective and promoting effects of FcGRIIb-/- and cGAS-/- mice, respectively, against cancers are partly related to macrophage functions with a subtle correlation to fecal microbiota, and FcGRIIb inhibitors and cGAS enhancers might be helpful for cancer adjuvant treatment.
Collapse
Affiliation(s)
- Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | | | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wilasinee Saisorn
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sarinya Kumpunya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Bhunyakarnjanarat T, Udompornpitak K, Wannigama DL, Ruchusatsawat A, Aphiboon P, Sripong T, Thim-Uam A, Leelahavanichkul A. Intratracheal Candida administration induced lung dysbiosis, activated neutrophils, and worsened lung hemorrhage in pristane-induced lupus mice. Sci Rep 2025; 15:9768. [PMID: 40118938 PMCID: PMC11928548 DOI: 10.1038/s41598-025-94632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Because the innate immunity might and fungi in the lungs might enhance the severity of lupus-induced diffuse alveolar hemorrhage (DAH), intraperitoneal pristane injection was performed in C57BL6 mice with intratracheal administration by Candida albicans or phosphate buffer solution (PBS). Despite the similar pristane-induced lupus (proteinuria, serum creatinine, and serum anti-dsDNA) at 5 weeks of the model, Candida administration worsened several characteristics, including mortality, body weight, serum cytokines (TNF-α and IL-6), and lung hemorrhage score, and cytokines in the lung tissue (TNF-α, IL-6, and IL-10), but not gut permeability (FITC-dextran assay), serum IL-10, immune cells in the spleens (flow cytometry analysis), and activities of peritoneal macrophages (polymerase-chain reaction). Although Candida administration reduced proteobacterial abundance and altered alpha and beta diversity compared with PBS control, lung microbiota was not different between Candida administration in pristane- and non-pristane-administered mice. Because of the prominent Gram-negative bacteria in lung microbiota and the role of neutrophils in DAH, lipopolysaccharide (LPS) with and without heat-killed Candida preparation was tested. Indeed, Candida preparation with LPS induced more severe pro-inflammatory neutrophils than LPS stimulation alone as indicated by the expression of several genes (TNF-α, IL-6, IL-1β, IL-10, Dectin-1, and NF-κB). In conclusion, the intratracheal Candida worsened pristane-induced lung hemorrhage partly through the enhanced neutrophil responses against bacteria and fungi. More studies on Candida colonization in sputum from patients with lupus-induced DAH are interesting.
Collapse
Affiliation(s)
- Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
| | - Alisa Ruchusatsawat
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
- Engineering Science Classroom, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pranpan Aphiboon
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanadech Sripong
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, 10330, Thailand.
- Faculty of Medicine, Center of Excellence in Systems Biology, Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Cheibchalard T, Leelahavanichkul A, Chatthanathon P, Klankeo P, Hirankarn N, Somboonna N. Fungal microbiome in gut of systemic lupus erythematosus (SLE)-prone mice (pristane and FCGRIIb deficiency), a possible impact of fungi in lupus. PLoS One 2024; 19:e0314662. [PMID: 39637140 PMCID: PMC11620554 DOI: 10.1371/journal.pone.0314662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The gut mycobiota (fungal microbiota) plays a crucial role in the immune system, potentially impacting autoimmune diseases such as systemic lupus erythematosus (SLE). Despite growing interest, data on intestinal fungi in SLE remain limited. This study thereby investigated the human-mimicked (mice) gut mycobiome and quantitative gut mycobiome analyses using universal fungal internal transcribed spacer 2 (ITS2) DNA next generation sequencing and real-time PCR, tracking time-series dynamics from preclinical to established SLE conditions in two SLE-prone mouse models. These models included pristane -induced mice, representing an environmental cause of SLE, and Fc gamma receptor RIIb (FcgRIIb) deficiency mice, representing a genetic factor. Fecal samples and different intestinal sections from mice aged 2-10 months were analyzed, including samples from 4-month-old and 11-month-old mice, which represented preclinical lupus (negative for anti-dsDNA) and established SLE conditions (positive for anti-dsDNA with proteinuria), respectively, alongside age-matched healthy controls. Results showed increased fungal diversity, specific changes in gut fungal species (i.e. increased Candida spp.), and an elevated Basidiomycota-to-Ascomycota (Basidiomycota/Ascomycota) ratio, which correlated with lupus activity in both lupus models. Linear discriminant analysis Effect Size (LEfSe; a possible representative organism) helped identify specific fungal difference between the lupus models. Our findings revealed that active lupus states may elevate gut fungal populations and alter fungal components in both the pristane and genetically susceptible SLE-prone mice, as indicated by mycobiota and quantitative mycobiota analyses. These changes could, in turn, influence disease activity. This research is essential for a deeper understand of the SLE-gut microbiome association, as the gut microbiome comprises both bacterial and fungal symbiosis. Manipulating fungal communities could present a potential therapeutic avenue for influencing disease outcomes in lupus. Further studies are crucial to clarify the direct role of gut fungi in lupus disease progression.
Collapse
Affiliation(s)
- Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Piriya Klankeo
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Chatthanathon P, Leelahavanichkul A, Cheibchalard T, Wilantho A, Hirankarn N, Somboonna N. Comparative time-series analyses of gut microbiome profiles in genetically and chemically induced lupus-prone mice and the impacts of fecal transplantation. Sci Rep 2024; 14:26371. [PMID: 39487198 PMCID: PMC11530527 DOI: 10.1038/s41598-024-77672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Although the association between gut dysbiosis (imbalance of the microbiota) in systemic lupus erythematosus (SLE) is well-known, the simultaneous exploration in gut dysbiosis in fecal and different intestinal sections before and after lupus onset (at 2, 4, 6, 8, and 10 months old) resulting from the loss of inhibitory Fc gamma receptor IIb (FcGIIb) and pristane induction have never been conducted. Anti-dsDNA (an important lupus autoantibody) and proteinuria developed as early as 6 months old in both models, with higher levels in FcGRIIb deficient (FcGRIIb-/-) mice. Compared to the healthy control at 2 and 4 months, the lupus mice (both FcGRRIIb-/- and pristane) and healthy mice at 6 months old demonstrated an alteration as indicated by the Shannon alpha diversity index, highlighting influences of lupus- and age-induced dysbiosis, respectively. Non-metric multidimensional scaling (NMDS) revealed that the fecal microbiota of FcGRIIb-/- mice were distinct from the age-matched healthy control at all timepoints (at 6 month, p < 0.05), while pristane mice showed divergence at only some timepoints. Analyses of different intestinal sections revealed similarity among microbiota in the cecum, colon, and feces, contrasting with those in the small intestines (duodenum, jejunum, and ileum). Subtle differences were found between FcGRIIb-/- and pristane mice in feces and the intestinal sections as assessed by several analyses, for examples, the similar or dissimilar distances (NMDS), the neighbor-joining clustering, and the potential metabolisms (KEGG pathway analysis). Due to the differences between the gut microbiota (feces and intestinal sections) in the lupus mice and the healthy control, rebalancing of the microbiota using rectal administration of feces from the healthy control (fecal transplantation; FMT) to 7-month-old FcGIIb-/- mice (the established lupus; positive anti-dsDNA and proteinuria) was performed. In comparison to FcGRIIb-/- mice without FMT, FMT mice (more effect on the female than the male mice) showed the lower anti-dsDNA levels with similar fecal microbiome diversity (16s DNA gene copy number) and microbiota patterns to the healthy control. In conclusion, gut microbiota (feces and intestinal sections) of lupus mice (FcGRIIb-/- and pristane) diverged from the control as early as 4-6 months old, correlating with lupus characteristics (anti-dsDNA and proteinuria). The different gut microbiota in FcGRIIb-/- and pristane suggested a possible different gut microbiota in lupus with various molecular causes. Furthermore, FMT appeared to mitigate gut dysbiosis and reduce anti-dsDNA, supporting the benefit of the rebalancing gut microbiota in lupus, with more studies are warranted.
Collapse
Affiliation(s)
- Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alisa Wilantho
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Chancharoenthana W, Kamolratanakul S, Yiengwattananon P, Phuengmaung P, Udompornpitak K, Saisorn W, Hiengrach P, Visitchanakun P, Schultz MJ, Leelahavanichkul A. Enhanced lupus progression in alcohol-administered Fc gamma receptor-IIb-deficiency lupus mice, partly through leaky gut-induced inflammation. Immunol Cell Biol 2023; 101:746-765. [PMID: 37575046 DOI: 10.1111/imcb.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Alcohol can induce a leaky gut, with translocation of microbial molecules from the gut into the blood circulation. Although the contribution of inflammation to organ-mediated damage in lupus has been previously demonstrated, the mechanistic roles of alcohol consumption in lupus activation are not known. Herein, we tested the effects of 10-week lasting alcohol administration on organ damages and immune responses in 8-week-old lupus-prone Fc gamma receptor IIb-deficient (FcγRIIb-/- ) mice. Our study endpoints were evaluation of systemic inflammation and assessment of fecal dysbiosis along with endotoxemia. In comparison with alcohol-administered wild-type mice, FcγRIIb-/- mice demonstrated more prominent liver damage (enzyme, histological score, apoptosis, malondialdehyde oxidant) and serum interleukin(IL)-6 levels, despite a similarity in leaky gut (fluorescein isothiocyanate-dextran assay, endotoxemia and gut occludin-1 immunofluorescence), fecal dysbiosis (microbiome analysis) and endotoxemia. All alcohol-administered FcγRIIb-/- mice developed lupus-like characteristics (serum anti-dsDNA, proteinuria, serum creatinine and kidney injury score) with spleen apoptosis, whereas control FcγRIIb-/- mice showed only a subtle anti-dsDNA. Both alcohol and lipopolysaccharide (LPS) similarly impaired enterocyte integrity (transepithelial electrical resistance), and only LPS, but not alcohol, upregulated the IL-8 gene in Caco-2 cells. In macrophages, alcohol mildly activated supernatant cytokines (tumor necrosis factor-α and IL-6), but not M1 polarization-associated genes (IL-1β and iNOS), whereas LPS prominently induced both parameters (more prominent in FcγRIIb-/- macrophages than wild type). There was no synergy in LPS plus alcohol compared with LPS alone in both enterocytes and macrophages. In conclusion, alcohol might exacerbate lupus-like activity partly through a profound inflammation from the leaky gut in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
da Silva AR, de Oliveira WF, da Silva PM, de Siqueira Patriota LL, de Vasconcelos Alves RR, de Oliveira APS, Dos Santos Correia MT, Paiva PMG, Vainstein MH, Filho PEC, Fontes A, Napoleão TH. Quantum dots conjugated to lectins from Schinus terebinthifolia leaves (SteLL) and Punica granatum sarcotesta (PgTeL) as potential fluorescent nanotools for investigating Cryptococcus neoformans. Int J Biol Macromol 2021; 192:232-240. [PMID: 34634324 DOI: 10.1016/j.ijbiomac.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
This study reports the development of conjugates based on quantum dots (QD)s and lectins from Schinus terebinthifolia leaves (SteLL) and Punica granatum sarcotesta (PgTeL). Cryptococcus neoformans cells were chosen to evaluate the efficiency of the conjugates. Lectins were conjugated to QDs via adsorption, and the optical parameters (emission and absorption) were monitored. Lectin stability in the conjugates towards denaturing agents was investigated via fluorometry. The conjugation was evaluated using fluorescence microplate (FMA) and hemagglutination (HA) assays. The labeling of the C. neoformans cell surface was quantified using flow cytometry and observed via fluorescence microscopy. The QDs-SteLL and QDs-PgTeL conjugates, obtained at pH 7.0 and 8.0, respectively, showed the maintenance of colloidal and optical properties. FMA confirmed the conjugation, and the HA assay indicated that the lectin carbohydrate-binding ability was preserved after conjugation. SteLL and PgTeL showed stability towards high urea concentrations and heating. Conjugates labeled over 90% of C. neoformans cells as observed via flow cytometry and confirmed through fluorescence microscopy. C. neoformans labeling by conjugates was inhibited by glycoproteins, suggesting specific interactions through the lectin carbohydrate-binding site. Thus, an effective protocol for the conjugation of SteLL or PgTeL with QDs was proposed, yielding new nanoprobes useful for glycobiological studies.
Collapse
Affiliation(s)
- Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | - Marilene Henning Vainstein
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Euzébio Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
7
|
Makjaroen J, Thim-Uam A, Dang CP, Pisitkun T, Somparn P, Leelahavanichkul A. A Comparison Between 1 Day versus 7 Days of Sepsis in Mice with the Experiments on LPS-Activated Macrophages Support the Use of Intravenous Immunoglobulin for Sepsis Attenuation. J Inflamm Res 2021; 14:7243-7263. [PMID: 35221705 PMCID: PMC8866997 DOI: 10.2147/jir.s338383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Because survival and death after sepsis are partly due to a proper immune adaptation and immune dysregulation, respectively, survivors and moribund mice after cecal ligation and puncture (CLP) sepsis surgery and in vitro macrophage experiments were explored. Methods Characteristics of mice at 1-day and 7-days post-CLP, the representative of moribund mice (an innate immune hyper-responsiveness) and survivors (a successful control on innate immunity), respectively. In parallel, soluble heat aggregated immunoglobulin (sHA-Ig), a representative of immune complex, was tested in lipopolysaccharide (LPS)-activated macrophages together with a test of intravenous immunoglobulin (IVIG), a molecule of adaptive immunity, on CLP sepsis mice. Results Except for a slight increase in alanine transaminase (liver injury), IL-10, endotoxemia, and gut leakage (FITC-dextran assay), most of the parameters in survivors (7-days post-CLP) were normalized, with enhanced adaptive immunity, including serum immunoglobulin (using serum protein electrophoresis) and activated immune cells in spleens (flow cytometry analysis). The addition of sHA-Ig in LPS-activated macrophages reduced supernatant cytokines, cell energy (extracellular flux analysis), reactive oxygen species (ROS), several cell activities (proteomic analysis), and Fc gamma receptors (FcgRs) expression. The loss of anti-inflammatory effect of sHA-Ig in LPS-activated macrophages from mice with a deficiency on Fc gamma receptor IIb (FcgRIIb-/-), the only inhibitory signaling of FcgRs family, when compared with wild-type macrophages, implying the FcgRIIb-dependent mechanism. Moreover, IVIG attenuated sepsis severity in CLP mice as evaluated by serum creatinine, liver enzyme (alanine transaminase), serum cytokines, spleen apoptosis, and abundance of dendritic cells in the spleen (24-h post-CLP) and survival analysis. Conclusion Immunoglobulin attenuated LPS-activated macrophages, partly, through the reduced cell energy of macrophages and might play a role in sepsis immune hyper-responsiveness. Despite the debate over IVIG’s use in sepsis, IVIG might be beneficial in sepsis with certain conditions.
Collapse
Affiliation(s)
- Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Correspondence: Asada Leelahavanichkul; Poorichaya Somparn Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, ThailandTel +666 2256 4132 Email
| |
Collapse
|
8
|
Riff R, Naamani O, Mazar J, Haviv YS, Chaimovitz C, Douvdevani A. A 1 and A 2A adenosine receptors play a protective role to reduce prevalence of autoimmunity following tissue damage. Clin Exp Immunol 2021; 205:278-287. [PMID: 33894002 PMCID: PMC8374218 DOI: 10.1111/cei.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a potent modulator that has a tremendous effect on the immune system. Adenosine affects T cell activity, and is necessary in maintaining the T helper/regulatory T cell (Treg ) ratio. Adenosine signalling is also involved in activating neutrophils and the formation of neutrophil extracellular traps (NETs), which has been linked to autoimmune disorders. Therefore, adenosine, through its receptors, is extremely important in maintaining homeostasis and involved in the development of autoimmune diseases. In this study, we aim to evaluate the role of adenosine A1 and A2A receptors in involvement of autoimmune diseases. We studied adenosine regulation by NETosis in vitro, and used two murine models of autoimmune diseases: type I diabetes mellitus (T1DM) induced by low-dose streptozotocin and pristane-induced systemic lupus erythematosus (SLE). We have found that A1 R enhances and A2A R suppresses NETosis. In addition, in both models, A1 R-knock-out (KO) mice were predisposed to the development of autoimmunity. In the SLE model in wild-type (WT) mice we observed a decline of A1 R mRNA levels 6 h after pristane injection that was parallel to lymphocyte reduction. Following pristane, 43% of A1 R-KO mice suffered from lupus-like disease while WT mice remained without any sign of disease at 36 weeks. In WT mice, at 10 days A2A R mRNA levels were significantly higher compared to A1R-KO mice. Similar to SLE, in the T1DM model the presence of A1 R and A2A R was protective. Our data suggest that, in autoimmune diseases, the acute elimination of lymphocytes and reduction of DNA release due to NETosis depends upon A1 R desensitization and long-term suppression of A2A R.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Autoimmunity/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Extracellular Traps/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Activation/immunology
- Neutrophils/immunology
- RNA, Messenger/genetics
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Signal Transduction/immunology
- Streptozocin
- Terpenes
Collapse
Affiliation(s)
- Reut Riff
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Present address:
Weizmann Institute of ScienceWolfson Building 158, 234 Herzl StreetFehovot7610001Israel
| | - Oshri Naamani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of ScienceHemdat HadaromCollege of EducationNetivotIsrael
| | - Julia Mazar
- Laboratory of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yosef S. Haviv
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Cidio Chaimovitz
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Amos Douvdevani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| |
Collapse
|
9
|
Saisorn W, Saithong S, Phuengmaung P, Udompornpitak K, Bhunyakarnjanarat T, Visitchanakun P, Chareonsappakit A, Pisitkun P, Chiewchengchol D, Leelahavanichkul A. Acute Kidney Injury Induced Lupus Exacerbation Through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice With Renal Ischemia Reperfusion Injury. Front Immunol 2021; 12:669162. [PMID: 34248948 PMCID: PMC8269073 DOI: 10.3389/fimmu.2021.669162] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Renal ischemia is the most common cause of acute kidney injury (AKI) that might be exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis. Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury, NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/- lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supichcha Saithong
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Thansita Bhunyakarnjanarat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Chareonsappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Saithong S, Saisorn W, Visitchanakun P, Sae-Khow K, Chiewchengchol D, Leelahavanichkul A. A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in Candida Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus. J Inflamm Res 2021; 14:2333-2352. [PMID: 34103965 PMCID: PMC8179808 DOI: 10.2147/jir.s305225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The translocation of organismal molecules from gut into blood circulation might worsen the disease severity of lupus through the induction of neutrophil extracellular traps (NETs). Methods An impact of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), components of gut bacteria and fungi, respectively, on NETs formation, was explored in lupus models, Fc gamma receptor IIB deficiency (FcGRIIB-/-) and Pristane injection, using Candida-administered dextran sulfate solution induced colitis (Candida-DSS) model. Results Severity of Candida-DSS in FcGRIIB-/- mice was more prominent than wild-type (WT) and Pristane mice as indicated by (i) colonic NETs using immunofluorescence of Ly6G, myeloperoxidase (MPO) and neutrophil elastase (NE) together with expression of PAD4 and IL-1β, (ii) colonic immunoglobulin (Ig) deposition (immunofluorescence), (iii) gut-leakage by FITC-dextran assay, endotoxemia and serum BG, (iv) systemic inflammation (neutrophilia, serum cytokines, serum dsDNA and anti-dsDNA) and (v) renal injury (proteinuria, glomerular NETs and Ig deposition). Discussion The formation of NETs in Candida-DSS mice was more severe than non-Candida-DSS mice and NETs in Candida-DSS were more profound in FcGRIIB-/- mice than Pristane mice. Prominent NETs in Candida-DSS FcGRIIB-/- mice might be due to the profound responses against LPS+BG in FcGRIIB-/- neutrophils compared with WT cells. These data implied an impact of the inhibitory FcGRIIB in NETs formation and an influence of gut fungi in lupus exacerbation. Hence, gut fungi in a DSS-induced gut-leakage lupus model enhanced colonic NETs that facilitated gut translocation of organismal molecules and synergistically exacerbated lupus activity.
Collapse
Affiliation(s)
- Supichcha Saithong
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kritsanawan Sae-Khow
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Udompornpitak K, Bhunyakarnjanarat T, Charoensappakit A, Dang CP, Saisorn W, Leelahavanichkul A. Lipopolysaccharide-Enhanced Responses against Aryl Hydrocarbon Receptor in FcgRIIb-Deficient Macrophages, a Profound Impact of an Environmental Toxin on a Lupus-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22084199. [PMID: 33919603 PMCID: PMC8073880 DOI: 10.3390/ijms22084199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Fc gamma receptor IIb (FcgRIIb) is the only inhibitory-FcgR in the FcgR family, and FcgRIIb-deficient (FcgRIIb−/−) mice develop a lupus-like condition with hyper-responsiveness against several stimulations. The activation of aryl hydrocarbon receptor (Ahr), a cellular environmental sensor, might aggravate activity of the lupus-like condition. As such, 1,4-chrysenequinone (1,4-CQ), an Ahr-activator, alone did not induce supernatant cytokines from macrophages, while the 24 h pre-treatment by lipopolysaccharide (LPS), a representative inflammatory activator, prior to 1,4-CQ activation (LPS/1,4-CQ) predominantly induced macrophage pro-inflammatory responses. Additionally, the responses from FcgRIIb−/− macrophages were more prominent than wild-type (WT) cells as determined by (i) supernatant cytokines (TNF-α, IL-6, and IL-10), (ii) expression of the inflammation associated genes (NF-κB, aryl hydrocarbon receptor, iNOS, IL-1β and activating-FcgRIV) and cell-surface CD-86 (a biomarker of M1 macrophage polarization), and (iii) cell apoptosis (Annexin V), with the lower inhibitory-FcgRIIb expression. Moreover, 8-week-administration of 1,4-CQ in 8 week old FcgRIIb−/− mice, a genetic-prone lupus-like model, enhanced lupus characteristics as indicated by anti-dsDNA, serum creatinine, proteinuria, endotoxemia, gut-leakage (FITC-dextran), and glomerular immunoglobulin deposition. In conclusion, an Ahr activation worsened the disease severity in FcgRIIb−/− mice possibly through the enhanced inflammatory responses. The deficiency of inhibitory-FcgRIIb in these mice, at least in part, prominently enhanced the pro-inflammatory responses. Our data suggest that patients with lupus might be more vulnerable to environmental pollutants.
Collapse
Affiliation(s)
- Kanyarat Udompornpitak
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Thansita Bhunyakarnjanarat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Awirut Charoensappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Cong Phi Dang
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
- Correspondence: ; Tel.: +66-2-256-4251; Fax: +66-2-252-6920
| |
Collapse
|
12
|
Bhunyakarnjanarat T, Udompornpitak K, Saisorn W, Chantraprapawat B, Visitchanakun P, Dang CP, Issara-Amphorn J, Leelahavanichkul A. Prominent Indomethacin-Induced Enteropathy in Fcgriib Defi-cient lupus Mice: An Impact of Macrophage Responses and Immune Deposition in Gut. Int J Mol Sci 2021; 22:1377. [PMID: 33573095 PMCID: PMC7866536 DOI: 10.3390/ijms22031377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
A high dose of NSAIDs, a common analgesic, might induce lupus activity through several NSAIDs adverse effects including gastrointestinal permeability defect (gut leakage) and endotoxemia. Indomethacin (25 mg/day) was orally administered for 7 days in 24-wk-old Fc gamma receptor IIb deficient (FcgRIIb-/-) mice, an asymptomatic lupus model (increased anti-dsDNA without lupus nephritis), and age-matched wild-type (WT) mice. Severity of indomethacin-induced enteropathy in FcgRIIb-/- mice was higher than WT mice as demonstrated by survival analysis, intestinal injury (histology, immune-deposition, and intestinal cytokines), gut leakage (FITC-dextran assay and endotoxemia), serum cytokines, and lupus characteristics (anti-dsDNA, renal injury, and proteinuria). Prominent responses of FcgRIIb-/- macrophages toward lipopolysaccharide (LPS) compared to WT cells due to the expression of only activating-FcgRs without inhibitory-FcgRIIb were demonstrated. Extracellular flux analysis indicated the greater mitochondria activity (increased respiratory capacity and respiratory reserve) in FcgRIIb-/- macrophages with a concordant decrease in glycolysis activity when compared to WT cells. In conclusion, gut leakage-induced endotoxemia is more severe in indomethacin-administered FcgRIIb-/- mice than WT, possibly due to the enhanced indomethacin toxicity from lupus-induced intestinal immune-deposition. Due to a lack of inhibitory-FcgRIIb expression, mitochondrial function, and cytokine production of FcgRIIb-/- macrophages were more prominent than WT cells. Hence, lupus disease-activation from NSAIDs-enteropathy-induced gut leakage is possible.
Collapse
Affiliation(s)
- Thansita Bhunyakarnjanarat
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Kanyarat Udompornpitak
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Bhumdhanin Chantraprapawat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Cong Phi Dang
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Jiraphorn Issara-Amphorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (W.S.); (B.C.); (P.V.); (C.P.D.); (J.I.-A.)
- Department of Microbiology, Immunology Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Issara-Amphorn J, Chancharoenthana W, Visitchanakun P, Leelahavanichkul A. Syk Inhibitor Attenuates Polymicrobial Sepsis in FcgRIIb-Deficient Lupus Mouse Model, the Impact of Lupus Characteristics in Sepsis. J Innate Immun 2020; 12:461-479. [PMID: 32927460 PMCID: PMC7747092 DOI: 10.1159/000509111] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The impact of spleen tyrosine kinase (Syk) signaling might be prominent in lupus because (i) Syk is a shared downstream signaling molecule among circulating immune complex, LPS, and (1→3)-β-D-glucan (BG), and (ii) all of these factors are detectable in the serum of Fc gamma receptor IIb-deficient (FcgRIIb-/-) mice with sepsis. As a proof of concept study, we activated macrophages with BG combined with LPS (BG + LPS). We found that BG + LPS predominantly upregulated Syk expression and proinflammatory cytokines in FcgRIIb-/- macrophages compared with wild-type (WT) macrophages. Syk inhibition downregulated several inflammatory pathways in FcgRIIb-/- macrophages activated with BG + LPS, as determined by RNA sequencing analysis, suggesting the potential anti-inflammatory impact of Syk inhibitors in lupus. Indeed, administration of a Syk inhibitor prior to cecal ligation and puncture (CLP) sepsis in FcgRIIb-/- mice reduced baseline lupus-induced proinflammatory cytokines and attenuated sepsis severity as evaluated by mortality, organ injury, serum LPS, and post-sepsis serum cytokines. In conclusion, it was easier to induce Syk expression in FcgRIIb-/- macrophages than in WT macrophages. This might be because of the loss of inhibitory signaling, which might be responsible for prominent Syk abundance in the spleens of 40-week-old FcgRIIb-/- mice and the potent effect of Syk inhibitor in lupus mice compared with WT.
Collapse
Affiliation(s)
- Jiraphorn Issara-Amphorn
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wiwat Chancharoenthana
- Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand,
| |
Collapse
|
14
|
Issara-Amphorn J, Somboonna N, Pisitkun P, Hirankarn N, Leelahavanichkul A. Syk inhibitor attenuates inflammation in lupus mice from FcgRIIb deficiency but not in pristane induction: the influence of lupus pathogenesis on the therapeutic effect. Lupus 2020; 29:1248-1262. [PMID: 32700597 DOI: 10.1177/0961203320941106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophages are responsible for the recognition of pathogen molecules. The downstream signalling of the innate immune responses against pathogen molecules, lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), and the adaptive immune response to antibodies, Fc gamma receptor (FcgR), is spleen tyrosine kinase (Syk). Because pathogen molecules and antibodies could be presented in lupus, impact of Syk and macrophages in lupus is explored. FcgR-IIb deficient (FcgRIIb-/-) mice, a model of inhibitory signalling loss, at 40 weeks old, but not pristane mice (a chemical induction lupus model) demonstrated spontaneous elevation of LPS and BG in serum from gut translocation despite the similarity in faecal microbiome analysis. Syk abundance in FcgRIIb-/- mice was higher than in pristane mice, possibly due to several Syk activators (anti-dsDNA, LPS and BG), and Syk inhibitor-attenuated proteinuria and serum cytokines only in FcgRIIb-/- mice. In addition, LPS + BG enhanced the expression of activating FcgRs, NF-κB and Syk, together with supernatant TNF-α predominantly in FcgRIIb-/- compared to wild-type macrophages. The inhibitors against Dectin-1, Syk and nuclear factor kappa B, but not anti-Raf-1, reduced supernatant TNF-α in LPS+BG-activated macrophages, implying Syk-dependent signalling. The pathogen molecules enhanced activating-FcgRs, without inhibition, through Syk, a shared downstream innate and adaptive signalling, is responsible for the hyper-responsiveness in FcgRIIb-/- macrophages. In conclusion, Syk inhibitor attenuated inflammation in FcgRIIb-/- but not in pristane mice, implying the influence of a lupus genetic background in treatment modalities.
Collapse
Affiliation(s)
- Jiraphorn Issara-Amphorn
- Medical Microbiology, Interdisciplinary and International Programme, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Centre of Excellence in Immunology and Immune Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|