1
|
Ran X, Wang T, Zhou M, Li Z, Wang H, Tsybekmitova GT, Guo J, Wang Y. A Novel Perspective on the Instability of Mainstream Partial Nitrification: The Niche Differentiation of Nitrifying Guilds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8922-8938. [PMID: 40294427 DOI: 10.1021/acs.est.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Short-cut biological nitrogen removal (sBNR) favors the paradigm shift toward energy-positive and carbon-neutral wastewater treatment processes. Partial nitrification (PN) is a key approach to provide nitrite for anammox or denitritation during sBNR, and its stability is the precondition for achieving robust nitrogen removal performance. However, maintaining a stable mainstream PN process has been a long-standing challenge. This review analyzes the mainstream PN process from a microbial ecology perspective, focusing on the niche differentiation among nitrifiers. First, we propose that mainstream PN systems are ecologically unstable, and the failure of the mainstream PN process due to the reactivation of nitrite-oxidizing bacteria (NOB) can be regarded as a behavior to restore system stabilization. Thus, maintaining mainstream PN systems primarily relies on enhancing the niche differentiation between ammonia-oxidizing bacteria (AOB) and NOB. We then summarize the realized niches of indigenous nitrifiers within nitrification systems and discuss their ecophysiological characteristics (e.g., cell structure and substrate affinity) that define their specific ecological niches. By comparing the niche breadths of AOB and NOB on various niche axes, we further discuss their niche differentiation and identify the different responses of AOB (resistance) and NOB (resilience) to exogenous perturbations. Finally, we propose outlook for achieving a stable mainstream PN process through an ecological lens. This review provides ecological insights into the instability of the mainstream PN process, which is intended to guide the derivation of optimized strategies from a single-factor approach to integrated solutions.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zibin Li
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Gazhit Ts Tsybekmitova
- Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science, Nedorezova, 16a, Chita 672014, Russian Federation
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
2
|
Wei X, Liang J, Ning T, Zhang C, Wang J, Tan L, Shen F. Response of soil microbial community structure and function to the sewage leakage: A case study of a 25-year-old cesspool. CHEMOSPHERE 2024; 363:142753. [PMID: 38971439 DOI: 10.1016/j.chemosphere.2024.142753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Providing many millions of rural households with decentralized sanitation facilities remains challenging. In undeveloped areas, cesspools have still been widely used due to technologically simple and low-cost. However, the influence of cesspools on the surrounding soil remains unclear. In this study, we investigated the influence of a 25-year-old household cesspool on soil physicochemical factors, microbial community composition and function, pathogens and antibiotic resistance genes (ARGs). Soil at the depth around the sewage liquid level (D70) was mostly disturbed where TOC, NO3-N and TP was increased to 16.8 g/kg, 18.2 mg/kg and 1.02 mg/kg respectively. Correspondingly, the element cycling genes of carbon fixation, methanotrophy, nitrogen fixation, ammonia oxidation, and nitrate reduction etc., were increased at D70. Notably, human derived pathogens such as Enterobacter, Salmonella, Pseudomonas aeruginosa, Klebsiella pneumoniae, Prevotella, and Vibrio were highly enriched by 5-10 folders in D70, indicating the potential health risk to human. Mantel tests suggested that EC, TP, pH, NH3-N and particularly NO3-N are important factors that influence the microbial community and element cycling genes in cesspool-affected soil. Overall, this study revealed the impact of household cesspool leakage on the surrounding soil and provided information for the selection and construction of basic sanitation facilities in poor regions.
Collapse
Affiliation(s)
- Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| |
Collapse
|
3
|
Schiller H, Hong Y, Kouassi J, Rados T, Kwak J, DiLucido A, Safer D, Marchfelder A, Pfeiffer F, Bisson A, Schulze S, Pohlschroder M. Identification of structural and regulatory cell-shape determinants in Haloferax volcanii. Nat Commun 2024; 15:1414. [PMID: 38360755 PMCID: PMC10869688 DOI: 10.1038/s41467-024-45196-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.
Collapse
Affiliation(s)
- Heather Schiller
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Yirui Hong
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Joshua Kouassi
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Jasmin Kwak
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA
| | - Anthony DiLucido
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA
| | - Daniel Safer
- University of Pennsylvania, Department of Physiology, Philadelphia, PA, 19104, USA
| | | | - Friedhelm Pfeiffer
- Biology II, Ulm University, 89069, Ulm, Germany
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Alexandre Bisson
- Brandeis University, Department of Biology, Waltham, MA, 02453, USA.
| | - Stefan Schulze
- University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA.
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, 14623, USA.
| | | |
Collapse
|
4
|
Yuan Y, Zhang G, Fang H, Guo H, Li Y, Li Z, Peng S, Wang F. Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13075-13088. [PMID: 38240967 DOI: 10.1007/s11356-024-31941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.
Collapse
Affiliation(s)
- Yiming Yuan
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China.
| | - Hongyuan Fang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Zezhuang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Siwei Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Fuming Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
5
|
Zhang Z, Bo L, Wang S, Li C, Zhang X, Xue B, Yang X, He X, Shen Z, Qiu Z, Zhao C, Wang J. Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge. ENVIRONMENTAL RESEARCH 2024; 242:117739. [PMID: 38007076 DOI: 10.1016/j.envres.2023.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.
Collapse
Affiliation(s)
- Zhaohui Zhang
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China.
| | - Lin Bo
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
6
|
Ni Y, Xu T, Yan S, Chen L, Wang Y. Hiding in plain sight: The discovery of complete genomes of 11 hypothetical spindle-shaped viruses that putatively infect mesophilic ammonia-oxidizing archaea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13230. [PMID: 38263861 PMCID: PMC10866085 DOI: 10.1111/1758-2229.13230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
The genome of a putative Nitrosopumilaceae virus with a hypothetical spindle-shaped particle morphology was identified in the Yangshan Harbour metavirome from the East China Sea through protein similarity comparison and structure analysis. This discovery was accompanied by a set of 10 geographically dispersed close relatives found in the environmental virus datasets from typical locations of ammonia-oxidizing archaeon distribution. Its host prediction was supported by iPHoP prediction and protein sequence similarity. The structure of the predicted major capsid protein, together with the overall N-glycosylation site, the transmembrane helices prediction, the hydrophilicity profile, and the docking simulation of the major capsid proteins, indicate that these viruses resemble spindle-shaped viruses. It suggests a similarly assembled structure and, consequently, a possibly spindle-shaped morphology of these newly discovered archaeal viruses.
Collapse
Affiliation(s)
- Yimin Ni
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Tianqi Xu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Shuling Yan
- Entwicklungsgenetik und Zellbiologie der TierePhilipps‐Universität MarburgMarburgGermany
| | - Lanming Chen
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)Ministry of AgricultureShanghaiChina
| | - Yongjie Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)Ministry of AgricultureShanghaiChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
7
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
8
|
Gorrasi S, Franzetti A, Brandt A, Minzlaff U, Pasqualetti M, Fenice M. Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench. ENVIRONMENTAL MICROBIOME 2023; 18:67. [PMID: 37533108 PMCID: PMC10398949 DOI: 10.1186/s40793-023-00522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The Kuril-Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. RESULTS As for the bacterial communities, we found that Proteobacteria (56.1-74.5%), Bacteroidetes (6.5-19.1%), and Actinobacteria (0.9-16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9-91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The β-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril-Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. CONCLUSIONS This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril-Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Andrea Franzetti
- Laboratory of Microbiology, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Ulrike Minzlaff
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Marcella Pasqualetti
- Laboratory of Ecology of Marine Fungi - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Massimiliano Fenice
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
- Laboratory of Applied Marine Microbiology - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| |
Collapse
|
9
|
Barrera-Rojas J, Gurubel-Tun KJ, Ríos-Castro E, López-Méndez MC, Sulbarán-Rangel B. An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México. Microorganisms 2023; 11:1640. [PMID: 37512813 PMCID: PMC10384328 DOI: 10.3390/microorganisms11071640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, sediments from the Santiago River were characterized to look for an alternative source of inoculum for biogas production. A proteomic analysis of methane-processing archaea present in these sediments was carried out. The Euryarchaeota superkingdom of archaea is responsible for methane production and methane assimilation in the environment. The Santiago River is a major river in México with great pollution and exceeded recovery capacity. Its sediments could contain nutrients and the anaerobic conditions for optimal growth of Euryarchaeota consortia. Batch bioreactor experiments were performed, and a proteomic analysis was conducted with current database information. The maximum biogas production was 266 NmL·L-1·g VS-1, with 33.34% of methane, and for proteomics, 3206 proteins were detected from 303 species of 69 genera. Most of them are metabolically versatile members of the genera Methanosarcina and Methanosarcinales, both with 934 and 260 proteins, respectively. These results showed a diverse euryarcheotic species with high potential to methane production. Although related proteins were found and could be feeding this metabolism through the methanol and acetyl-CoA pathways, the quality obtained from the biogas suggests that this metabolism is not the main one in carbon use, possibly the sum of several conditions including growth conditions and the pollution present in these sediments.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Kelly Joel Gurubel-Tun
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Emmanuel Ríos-Castro
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México 07000, Mexico
| | - María Cristina López-Méndez
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/ITS de Misantla, Veracruz 93850, Mexico
| | - Belkis Sulbarán-Rangel
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
10
|
Dithugoe CD, Bezuidt OKI, Cavan EL, Froneman WP, Thomalla SJ, Makhalanyane TP. Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions. mSphere 2023:e0042022. [PMID: 37093039 DOI: 10.1128/msphere.00420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
The biological carbon pump (BCP) in the Southern Ocean is driven by phytoplankton productivity and is a significant organic matter sink. However, the role of particle-attached (PA) and free-living (FL) prokaryotes (bacteria and archaea) and their diversity in influencing the efficiency of the BCP is still unclear. To investigate this, we analyzed the metagenomes linked to suspended and sinking marine particles from the Sub-Antarctic Southern Ocean Time Series (SOTS) by deploying a Marine Snow Catcher (MSC), obtaining suspended and sinking particulate material, determining organic carbon and nitrogen flux, and constructing metagenome-assembled genomes (MAGs). The suspended and sinking particle-pools were dominated by bacteria with the potential to degrade organic carbon. Bacterial communities associated with the sinking fraction had more genes related to the degradation of complex organic carbon than those in the suspended fraction. Archaea had the potential to drive nitrogen metabolism via nitrite and ammonia oxidation, altering organic nitrogen concentration. The data revealed several pathways for chemoautotrophy and the secretion of recalcitrant dissolved organic carbon (RDOC) from CO2, with bacteria and archaea potentially sequestering particulate organic matter (POM) via the production of RDOC. These findings provide insights into the diversity and function of prokaryotes in suspended and sinking particles and their role in organic carbon/nitrogen export in the Southern Ocean. IMPORTANCE The biological carbon pump is crucial for the export of particulate organic matter in the ocean. Recent studies on marine microbes have shown the profound influence of bacteria and archaea as regulators of particulate organic matter export. Yet, despite the importance of the Southern Ocean as a carbon sink, we lack comparable insights regarding microbial contributions. This study provides the first insights regarding prokaryotic contributions to particulate organic matter export in the Southern Ocean. We reveal evidence that prokaryotic communities in suspended and sinking particle fractions harbor widespread genomic potential for mediating particulate organic matter export. The results substantially enhance our understanding of the role played by microorganisms in regulating particulate organic matter export in suspended and sinking marine fractions in the Southern Ocean.
Collapse
Affiliation(s)
- Choaro D Dithugoe
- Southern Ocean Carbon-Climate Observatory (SOCCO), Council of Scientific & Industrial Research (CSIR), Rosebank, Cape Town, South Africa
- SARChI Chair: Marine Ecosystems and Resources, Department of Entomology & Zoology, Rhodes University (RU), Makhanda, Eastern Cape, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria (UP), Hatfield, Pretoria, South Africa
| | - Oliver K I Bezuidt
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria (UP), Hatfield, Pretoria, South Africa
| | - Emma L Cavan
- Imperial College London, Berks, Silwood Park, Berkshire, United Kingdom
| | - William P Froneman
- SARChI Chair: Marine Ecosystems and Resources, Department of Entomology & Zoology, Rhodes University (RU), Makhanda, Eastern Cape, South Africa
| | - Sandy J Thomalla
- Southern Ocean Carbon-Climate Observatory (SOCCO), Council of Scientific & Industrial Research (CSIR), Rosebank, Cape Town, South Africa
| | - Thulani P Makhalanyane
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria (UP), Hatfield, Pretoria, South Africa
| |
Collapse
|
11
|
Abstract
Microbial ecology is the study of microorganisms present in nature. It particularly focuses on microbial interactions with any biota and with surrounding environments. Microbial ecology is entering its golden age with innovative multi-omics methods triggered by next-generation sequencing technologies. However, the extraction of ecologically relevant information from ever-increasing omics data remains one of the most challenging tasks in microbial ecology. This special issue includes 11 review articles that provide an overview of the state of the art of omics-based approaches in the field of microbial ecology, with particular emphasis on the interpretation of omics data, environmental pollution tracking, interactions in microbiomes, and viral ecology.
Collapse
|