1
|
Lee KA, Ul-Haq A, Seo H, Jo S, Kim S, Song HY, Kim HS. Characteristics of skin microbiome associated with disease severity in systemic sclerosis. J Microbiol 2025; 63:e.2409018. [PMID: 39895074 DOI: 10.71150/jm.2409018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/06/2024] [Indexed: 02/04/2025]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disorder characterised by skin fibrosis and internal organ involvement. Disruptions in the microbial communities on the skin may contribute to the onset of autoimmune diseases that affect the skin. However, current research on the skin microbiome in SSc is lacking. This study aimed to investigate skin microbiome associated with disease severity in SSc. Skin swabs were collected from the upper limbs of 46 healthy controls (HCs) and 36 patients with SSc. Metagenomic analysis based on the 16S rRNA gene was conducted and stratified by cutaneous subtype and modified Rodnan skin score (mRSS) severity. Significant differences in skin bacterial communities were observed between the HCs and patients with SSc, with further significant variations based on subtype and mRSS severity. The identified biomarkers were Bacteroides and Faecalibacterium for patients with diffuse cutaneous SSc with high mRSS (≥ 10) and Mycobacterium and Parabacteroides for those with low mRSS (< 10). Gardnerella, Abies, Lactobacillus, and Roseburia were the biomarkers in patients with limited cutaneous SSc (lcSS) and high mRSS, whereas Coprococcus predominated in patients with lcSS and low mRSS. Cutaneous subtype analysis identified Pediococcus as a biomarker in the HCs, whereas mRSS analysis revealed the presence of Pseudomonas in conjunction with Pediococcus. In conclusion, patients with SSc exhibit distinct skin microbiota compared with healthy controls. Bacterial composition varies by systemic sclerosis cutaneous subtype and skin thickness.
Collapse
Affiliation(s)
- Kyung-Ann Lee
- Division of Rheumatobiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Asad Ul-Haq
- Division of Rheumatobiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
- Human Microbiome Medical Research Center (HMMRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan, Chungnam 31538, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HMMRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan, Chungnam 31538, Republic of Korea
| | - Sujin Jo
- Human Microbiome Medical Research Center (HMMRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan, Chungnam 31538, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31151, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HMMRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan, Chungnam 31538, Republic of Korea
| | - Ho-Yeon Song
- Human Microbiome Medical Research Center (HMMRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan, Chungnam 31538, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam 31151, Republic of Korea
| | - Hyun-Sook Kim
- Division of Rheumatobiology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
2
|
Kim JH, Seo H, Kim S, Rahim MA, Jo S, Barman I, Tajdozian H, Sarafraz F, Song HY, Song YS. Different Prostatic Tissue Microbiomes between High- and Low-Grade Prostate Cancer Pathogenesis. Int J Mol Sci 2024; 25:8943. [PMID: 39201629 PMCID: PMC11354394 DOI: 10.3390/ijms25168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Numerous human pathologies, such as neoplasia, are related to particular bacteria and changes in microbiome constituents. To investigate the association between an imbalance of bacteria and prostate carcinoma, the microbiome and gene functionality from tissues of patients with high-grade prostate tumor (HGT) and low-grade prostate tumor (LGT) were compared utilizing next-generation sequencing (NGS) technology. The results showed abnormalities in the bacterial profiles between the HGT and LGT specimens, indicating alterations in the make-up of bacterial populations and gene functionalities. The HGT specimens showed higher frequencies of Cutibacterium, Pelomonas, and Corynebacterium genera than the LGT specimens. Cell proliferation and cytokine assays also showed a significant proliferation of prostate cancer cells and elevated cytokine levels in the cells treated with Cutibacterium, respectively, supporting earlier findings. In summary, the HGT and LGT specimens showed differences in bacterial populations, suggesting that different bacterial populations might characterize high-grade and low-grade prostate malignancies.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hanieh Tajdozian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Faezeh Sarafraz
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
3
|
Demarquoy J, Dehmej O. Reassessing Gout Management through the Lens of Gut Microbiota. Appl Microbiol 2024; 4:824-838. [DOI: 10.3390/applmicrobiol4020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gout, recognized as the most common form of inflammatory arthritis, arises from the accumulation of uric acid crystals, leading to intense pain, particularly in the big toe. This condition has traditionally been associated with the overproduction or reduced clearance of uric acid. Recent studies, however, have underscored the significant role of the gut microbiota in uric acid metabolism, impacting both its production and elimination. This emerging understanding suggests that maintaining gut health could offer innovative approaches to treating gout, complementing traditional dietary and pharmacological interventions. It highlights the potential of probiotics or microbiome-based therapies, indicating a future where treatments are tailored to an individual’s microbiome. This offers a fresh perspective on gout management and underscores the broader influence of the microbiota on health and disease.
Collapse
Affiliation(s)
- Jean Demarquoy
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, 21000 Dijon, France
| | - Oumaima Dehmej
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, 21000 Dijon, France
| |
Collapse
|
4
|
Lv Q, Zhou J, Wang C, Yang X, Han Y, Zhou Q, Yao R, Sui A. A dynamics association study of gut barrier and microbiota in hyperuricemia. Front Microbiol 2023; 14:1287468. [PMID: 38088975 PMCID: PMC10711221 DOI: 10.3389/fmicb.2023.1287468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction The intricate interplay between gut microbiota and hyperuricemia remains a subject of growing interest. However, existing studies only provided snapshots of the gut microbiome at single time points, the temporal dynamics of gut microbiota alterations during hyperuricemia progression and the intricate interplay between the gut barrier and microbiota remain underexplored. Our investigation revealed compelling insights into the dynamic changes in both gut microbiota and intestinal barrier function throughout the course of hyperuricemia. Methods The hyperuricemia mice (HY) were given intragastric administration of adenine and potassium oxalate. Gut microbiota was analyzed by 16S rRNA sequencing at 3, 7, 14, and 21 days after the start of the modeling process. Intestinal permeability as well as LPS, TNF-α, and IL-1β levels were measured at 3, 7, 14, and 21 days. Results We discovered that shifts in microbial community composition occur prior to the onset of hyperuricemia, key bacterial Bacteroidaceae, Bacteroides, and Blautia exhibited reduced levels, potentially fueling microbial dysbiosis as the disease progresses. During the course of hyperuricemia, the dynamic fluctuations in both uric acid levels and intestinal barrier function was accompanied with the depletion of key beneficial bacteria, including Prevotellaceae, Muribaculum, Parabacteroides, Akkermansia, and Bacteroides, and coincided with an increase in pathogenic bacteria such as Oscillibacter and Ruminiclostridium. This microbial community shift likely contributed to elevated lipopolysaccharide (LPS) and pro-inflammatory cytokine levels, ultimately promoting metabolic inflammation. The decline of Burkholderiaceae and Parasutterella was inversely related to uric acid levels, Conversely, key families Ruminococcaceae, Family_XIII, genera Anaeroplasma exhibited positive correlations with uric acid levels. Akkermansiaceae and Bacteroidaceae demonstrating negative correlations, while LPS-containing microbiota such as Desulfovibrio and Enterorhabdus exhibited positive correlations with intestinal permeability. Conclusion In summary, this study offers a dynamic perspective on the complex interplay between gut microbiota, uric acid levels, and intestinal barrier function during hyperuricemia progression. Our study suggested that Ruminiclostridium, Bacteroides, Akkermansiaceae, Bilophila, Burkholderiaceae and Parasutterella were the key bacteria that play vital rols in the progress of hyperuricemia and compromised intestinal barrier, which provide a potential avenue for therapeutic interventions in hyperuricemia.
Collapse
Affiliation(s)
- Qiulan Lv
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhou
- Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyao Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomin Yang
- Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yafei Han
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Quan Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Ermakov VS, Granados JC, Nigam SK. Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis. JCI Insight 2023; 8:e172341. [PMID: 37937647 PMCID: PMC10721261 DOI: 10.1172/jci.insight.172341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific transporter responsible for the elimination by the kidney of small organic anions that derive from the gut microbiome. Many are uremic toxins associated with chronic kidney disease (CKD). OAT1 is among a group of "drug" transporters that act as hubs in a large homeostatic network regulating interorgan and interorganismal communication via small molecules. The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub in the network results in compensatory interorganismal communication (e.g., host-gut microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-genome sequencing revealed that loss of OAT1 was impressively associated with microbial pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal communication by regulating the gut microbiome composition and metabolic capability. Since OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed light on the associated alterations in gut-microbiome dynamics.
Collapse
Affiliation(s)
| | | | - Sanjay K Nigam
- Department of Pediatrics, and
- Department of Medicine, Division of Nephrology, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
6
|
Terkeltaub R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 2023; 83:1501-1521. [PMID: 37819612 DOI: 10.1007/s40265-023-01944-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hyperuricemia with consequent monosodium urate crystal deposition leads to gout, characterized by painful, incapacitating inflammatory arthritis flares that are also associated with increased cardiovascular event and related mortality risk. This narrative review focuses on emerging pharmacologic urate-lowering treatment (ULT) and management strategies in gout. Undertreated, gout can progress to palpable tophi and joint damage. In oral ULT clinical trials, target serum urate of < 6.0 mg/dL can be achieved in ~ 80-90% of subjects, with flare burden reduction by 1-2 years. However, real-world ULT results are far less successful, due to both singular patient nonadherence and prescriber undertreatment, particularly in primary care, where most patients are managed. Multiple dose titrations commonly needed to optimize first-line allopurinol ULT monotherapy, and substantial potential toxicities and other limitations of approved, marketed oral monotherapy ULT drugs, promote hyperuricemia undertreatment. Common gout comorbidities with associated increased mortality (e.g., moderate-severe chronic kidney disease [CKD], type 2 diabetes, hypertension, atherosclerosis, heart failure) heighten ULT treatment complexity and emphasize unmet needs for better and more rapid clinically significant outcomes, including attenuated gout flare burden. The gout drug armamentarium will be expanded by integrating sodium-glucose cotransporter-2 (SGLT2) inhibitors with uricosuric and anti-inflammatory properties as well as clinically indicated antidiabetic, nephroprotective, and/or cardioprotective effects. The broad ULT developmental pipeline is loaded with multiple uricosurics that selectively target uric acid transporter 1 (URAT1). Evolving ULT approaches include administering selected gut anaerobic purine degrading bacteria (PDB), modulating intestinal urate transport, and employing liver-targeted xanthine oxidoreductase mRNA knockdown. Last, emerging measures to decrease the immunogenicity of systemically administered recombinant uricases should simplify treatment regimens and further improve outcomes in managing the most severe gout phenotypes.
Collapse
Affiliation(s)
- Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Wang M, Fan J, Huang Z, Zhou D, Wang X. Causal Relationship between Gut Microbiota and Gout: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4260. [PMID: 37836544 PMCID: PMC10574468 DOI: 10.3390/nu15194260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Gout is a form of prevalent and painful inflammatory arthritis characterized by elevated serum urate (SUA) levels. The gut microbiota (GM) is believed to influence the development of gout and SUA levels. Our study aimed to explore the causal relationship between GM composition and gout, as well as SUA levels, utilizing a two-sample Mendelian Randomization (MR) approach. A total of 196 GM taxa from five levels were available for analysis. We identified five taxa associated with SUA levels and 10 taxa associated with gout. In reverse MR analysis, we discovered that gout affected the composition of five GM taxa, while SUA levels influenced the composition of 30 GM taxa. Combining existing research, our study unveiled a potential negative feedback loop between phylum Actinobacteria and SUA levels, establishing connections with gout. We also proposed two novel associations connecting GM taxa (genus Faecalibacterium and genus Prevotella9), SUA levels, and gout. These findings provide compelling evidence of causal relationships between specific GM taxa with SUA levels and gout, contributing valuable insights for the treatment of gout.
Collapse
Affiliation(s)
- Mengna Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaohui Huang
- Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xue Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Zaninelli TH, Martelossi-Cebinelli G, Saraiva-Santos T, Borghi SM, Fattori V, Casagrande R, Verri WA. New drug targets for the treatment of gout arthritis: what's new? Expert Opin Ther Targets 2023; 27:679-703. [PMID: 37651647 DOI: 10.1080/14728222.2023.2247559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, MA, USA
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
9
|
Kim JH, Seo H, Kim S, Ul-Haq A, Rahim MA, Jo S, Song HY, Song YS. Biochemical Recurrence in Prostate Cancer Is Associated with the Composition of Lactobacillus: Microbiome Analysis of Prostatic Tissue. Int J Mol Sci 2023; 24:10423. [PMID: 37445601 DOI: 10.3390/ijms241310423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Many human pathologies, such as malignancy, are linked with specific bacteria and changes in the constituents of the microbiome. In order to examine the association between an imbalance of bacteria and prostate carcinoma, a comparison of the microbiomes present in patients with biochemical recurrence (BCR) or NO BCR (NBCR) was performed. Additionally, 16S rRNA-based next-generation sequencing was applied to identify the bacterial profiles within these tumors in terms of the bacteria and operational genes present. The percentage average taxonomic composition between the taxa indicated no difference between BCR and NBCR. In addition, alpha and beta diversity indices presented no distinction between the cohorts in any statistical method. However, taxonomic biomarker discovery indicated a relatively higher population of Lactobacillus in the NBCR group, and this finding was supported by PCR data. Along with that, differences in the operational activity of the bacterial genes were also determined. It is proposed that the biochemical recurrence was linked to the quantity of Lactobacillus present. The aim of this study was to investigate the microbiome involved in prostate carcinoma and the potential association between them.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Chungnam 31151, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Chungnam 31151, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Chungnam 31151, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Chungnam 31151, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Chungnam 31151, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Chungnam 31538, Republic of Korea
| | - Yun Seob Song
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| |
Collapse
|
10
|
Ul-Haq A, Seo H, Jo S, Park H, Kim S, Lee Y, Lee S, Jeong JH, Song H. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Pol J Microbiol 2022; 71:601-613. [PMID: 36537058 PMCID: PMC9944973 DOI: 10.33073/pjm-2022-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
An imbalanced gut microbiome has been linked to a higher risk of many bone-related diseases. The objective of this study was to discover biomarkers of osteoporosis (OP). So, we collected 76 stool samples (60 human controls and 16 OP patients), extracted DNA, and performed 16S ribosomal ribonucleic acid (rRNA) gene-based amplicon sequencing. Among the taxa with an average taxonomic composition greater than 1%, only the Lachnospira genus showed a significant difference between the two groups. The Linear Discriminant Effect Size analysis and qPCR experiments indicated the Lachnospira genus as a potential biomarker of OP. Moreover, a total of 11 metabolic pathways varied between the two groups. Our study concludes that the genus Lachnospira is potentially crucial for diagnosing and treating osteoporosis. The findings of this study might help researchers better understand OP from a microbiome perspective. This research might develop more effective diagnostic and treatment methods for OP in the future.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyuna Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| | - Ho‑Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| |
Collapse
|