1
|
Latoszek E, Wiweger M, Ludwiczak J, Dunin-Horkawicz S, Kuznicki J, Czeredys M. Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington’s disease models. Cell Biosci 2022; 12:34. [PMID: 35305696 PMCID: PMC8934500 DOI: 10.1186/s13578-022-00755-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. Results A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. Conclusions Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin–proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00755-0.
Collapse
|
2
|
Wang N, Wang Y, Wang H, Luo N, Yang W, Zhao Z. Knockout of Calcyclin Binding Protein Impedes the Growth of Breast Cancer Cells by Regulating Cell Apoptosis and β-Catenin Signaling. DNA Cell Biol 2021; 40:1317-1324. [PMID: 34591648 DOI: 10.1089/dna.2021.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast invasive carcinoma (BRCA) is becoming the most common malignant disease worldwide, and there is intense interest in identifying diagnostic biomarkers that can be targeted for treatment of BRCA. Recent evidence has shown that calcyclin binding protein (CacyBP) can function as either a tumor promoter or suppressor during carcinogenesis. Data in The Cancer Genome Atlas (TCGA) database show that CacyBP is overexpressed in human BRCA tissues, and high levels of CacyBP are associated with shorter overall survival. Immunohistochemical staining has shown that CacyBP levels are high in cancer tissue samples and associated with a higher likelihood of disease progression. We, therefore, conducted a knockout assay to determine the role of CacyBP in the development of BRCA. Knockout of CacyBP significantly inhibited MCF7 cell proliferation and colony formation. Apoptosis was higher in CacyBP knockout cells compared with control cells. Microarray analysis showed that the CacyBP knockout caused dysregulation of numerous genes closely related to β-catenin signaling, whereas quantitative reverse-transcription PCR and immunoblotting showed that it to be inactivated. In summary, we conclude that when overexpressed, CacyBP acts as a potential oncogene for BRCA by regulating β-catenin signaling.
Collapse
Affiliation(s)
- Ningju Wang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yan Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Huifeng Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Luo
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjing Yang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhijun Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Xuan C, Gao Y, Jin M, Xu S, Wang L, Wang Y, Han R, Shi K, Chen X, An Q. Bioinformatic analysis of Cacybp-associated proteins using human glioma databases. IUBMB Life 2019; 71:827-834. [PMID: 30762928 DOI: 10.1002/iub.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the primary cellular pathway for protein degradation, mediating 80% of intracellular protein degradation. Because of the widespread presence of ubiquitin-modified protein substrates, ubiquitination can regulate a variety of cellular activities including cell proliferation, apoptosis, autophagy, endocytosis, DNA damage repair, and immune responses. With the continuous generation of genomics data in recent years it has become particularly important to analyze these data effectively and reasonably. Cacybp forms a complex with the E3 ubiquitinated ligase Siah1 to participate in ubiquitination. We analyzed Cacybp-associated genes using the Gene Expression Omnibus (GEO) and CGGA (Chinese Glioma Genome Atlas) databases and identified 121 differentially expressed genes (DEGs), of which 46 were downregulated and 75 were upregulated. The biological processes, molecular functions, and protein-protein interaction (PPI) network of differential genes were analyzed by Cytoscape software and STRING software. We found no difference in Cacybp expression among different grades of gliomas and there was no significant association between the expression level of Cacybp and the prognosis of patients with glioma in LGG and GBM. © 2019 IUBMB Life, 1-8, 2019.
Collapse
Affiliation(s)
- Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yong Gao
- Department of Orthopaedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Shumei Xu
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Rui Han
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Kunpeng Shi
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu, People's Republic of China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| |
Collapse
|
4
|
Yan S, Li A, Liu Y. CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int 2017; 42:216-226. [PMID: 29024247 DOI: 10.1002/cbin.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 11/09/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) has been reported to be up-regulated and plays an important role in promoting cell proliferation in human glioma. However, the effect of CacyBP/SIP on glioma cell motility is still unclear. Here, to our surprise, CacyBP/SIP was found to inhibit the migration and invasion of glioma cells U251 and U87. Silencing of CacyBP/SIP significantly promoted the migration and invasion behaviors of glioma cells. On the contrary, overexpression of CacyBP/SIP obviously suppressed them. Further investigation indicated that silencing of CacyBP/SIP significantly reduced the interaction between Siah1 and cytoplasmic p27, which in turn attenuated the ubiquitination and degradation of cytoplasmic p27. In contrast, overexpression of CacyBP/SIP promoted the interaction between Siah1 and cytoplasmic p27, which in turn increased the ubiquitination and degradation of cytoplasmic p27. Importantly, the degradation of p27 could be blocked by Siah1 knockdown. Finally, we found that CacyBP/SIP was reversely related to cytoplasmic p27 in human normal brain tissues and glioma tissues. Taken together, these results suggest that CacyBP/SIP plays an important role in inhibiting glioma cell migration and invasion through promoting the degradation of cytoplasmic p27.
Collapse
Affiliation(s)
- Shiwei Yan
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Yuguang Liu
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
5
|
The potential role of CacyBP/SIP in tumorigenesis. Tumour Biol 2016; 37:10785-91. [PMID: 26873490 DOI: 10.1007/s13277-016-4871-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/14/2016] [Indexed: 01/15/2023] Open
Abstract
Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) was initially described as a binding partner of S100A6 in the Ehrlich ascites tumor cells and later as a Siah-1-interacting protein. This 30 kDa protein includes three domains and is involved in cell proliferation, differentiation, cytoskeletal rearrangement, and transcriptional regulation via binding to various proteins. Studies have also shown that the CacyBP/SIP is a critical protein in tumorigenesis. But, its promotion or suppression of cancer progression may depend on the cell type. In this review, the biological characteristics and target proteins of CacyBP/SIP have been described. Moreover, the exact role of CacyBP/SIP in various cancers is discussed.
Collapse
|
6
|
Tang Y, Zhan W, Cao T, Tang T, Gao Y, Qiu Z, Fu C, Qian F, Yu R, Shi H. CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2. IUBMB Life 2016; 68:211-9. [PMID: 26825673 DOI: 10.1002/iub.1477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 11/11/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma.
Collapse
Affiliation(s)
- Yuan Tang
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tong Cao
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tianjin Tang
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Gao
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhichao Qiu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Chunling Fu
- Institute of Blood Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Fengyuan Qian
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Mechanism of Breast Cancer Preventive Action of Pomegranate: Disruption of Estrogen Receptor and Wnt/β-Catenin Signaling Pathways. Molecules 2015; 20:22315-28. [PMID: 26703530 PMCID: PMC6332439 DOI: 10.3390/molecules201219853] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
A pomegranate emulsion (PE), containing various bioactive phytochemicals, has recently been found to exert substantial chemopreventive effect against 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumorigenesis in rats via antiproliferative and proapoptotic actions. Nevertheless, the underlying mechanisms of action are not completely understood. The present study was designed to investigate the effects of PE treatment on intratumor expression of estrogen receptor (ER)-α, ER-β,β-catenin and cyclin D1 during DMBA rat mammary carcinogenesis. Mammary tumor sections were harvested from a chemopreventive study in which PE (0.2, 1.0 and 5.0 g/kg) exhibited inhibition of mammary tumorigenesis in a dose-response manner. The expressions of ER-α, ER-β, β-catenin and cyclin D1 were analyzed by immunohistochemical techniques. PE downregulated the expression of intratumor ER-α and ER-β and lowered ER-α:ER-β ratio. PE also decreased the expression, cytoplasmic accumulation, and nuclear translocation of β-catenin, an essential transcriptional cofactor for Wnt signaling. Moreover, PE suppressed the expression of cell growth regulatory protein cyclin D1, which is a downstream target for both ER and Wnt signaling. Our current results in conjunction with our previous findings indicate that concurrent disruption of ER and Wnt/β-catenin signaling pathways possibly contributes to antiproliferative and proapoptotic effects involved in PE-mediated chemoprevention of DMBA-inflicted rat mammary tumorigenesis.
Collapse
|
8
|
Topolska-Woś AM, Chazin WJ, Filipek A. CacyBP/SIP--Structure and variety of functions. Biochim Biophys Acta Gen Subj 2015; 1860:79-85. [PMID: 26493724 DOI: 10.1016/j.bbagen.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins. SCOPE OF REVIEW CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes. MAJOR CONCLUSIONS CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies. GENERAL SIGNIFICANCE The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, USA; Department of Chemistry, Vanderbilt University, Nashville, USA; Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
9
|
Mandal A, Bhatia D, Bishayee A. Simultaneous disruption of estrogen receptor and Wnt/β-catenin signaling is involved in methyl amooranin-mediated chemoprevention of mammary gland carcinogenesis in rats. Mol Cell Biochem 2014; 384:239-50. [PMID: 24078029 DOI: 10.1007/s11010-013-1803-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/30/2013] [Indexed: 12/21/2022]
Abstract
Methyl-amoorain (methyl-25-hydroxy-3-oxoo-lean-12-en-28-oate, AMR-Me), a novel synthetic oleanane triterpenoid, exerts a striking chemopreventive effect against 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumorigenesis through antiproliferative and proapoptotic actions. Nevertheless, the underlying mechanisms of action remain to be established. As estrogen receptor (ER) and canonical Wnt/b-catenin signaling are involved in the development and progression of breast cancer, the current study was designed to investigate the effects of AMR-Me treatment on the expressions of ER-a, ER-b, b-catenin and cyclin D1 in rat mammary tumors induced by DMBA. Mammary tumor samples were harvested from an 18-week chemopreventive study in which AMR-Me (0.8–1.6 mg/kg) was shown to inhibit mammary carcinogenesis in a dose–response manner. The expressions of ER-a, ER-b, b-catenin, and cyclin D1 were determined by immunohistochemistry and reverse transcription-polymerase chain reaction. AMR-Me downregulated the expression of intratumor ER-a and ER-b and lowered the ratio of ER-a to ER-b. AMR-Me also reduced the expression, cytoplasmic accumulation, and nuclear translocation of b-catenin, the essential transcriptional cofactor for Wnt signaling. Furthermore, AMR-Me modulated the expression of cell growth regulatory gene cyclin D1, which is a downstream target for both ER and Wnt signaling. AMR-Me at 1.6 mg/kg for 18 weeks did not exhibit any hepatotoxicity or renotoxicity. The results of the present study coupled with our previous findings indicate that simultaneous disruption of ER and Wnt/b-catenin signaling possibly contributes to antiproliferative and apoptosis-inducing effects implicated in AMR-Me-mediated chemoprevention of DMBA-induced breast tumorigenesis in rats. Our results also suggest a possible crosstalk between two key regulatory pathways, namely ER and Wnt/b-catenin signaling, involved in mammary carcinogenesis and the value of simultaneously targeting these pathways to achieve breast cancer chemoprevention.
Collapse
|
10
|
CacyBP/SIP enhances multidrug resistance of pancreatic cancer cells by regulation of P-gp and Bcl-2. Apoptosis 2013; 18:861-9. [DOI: 10.1007/s10495-013-0831-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|