1
|
Sobral DV, Salgado MRT, Martins MR, Vasconcelos CDS, Anunciação CEC, de Andrade VP, Torres LC. Prognostic role of SOX2 and STAT3 expression on circulating T lymphocytes and CD44+/CD24 neg cells in the locally advanced and metastatic breast cancer. J Surg Oncol 2024. [PMID: 38825982 DOI: 10.1002/jso.27716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Breast cancer (BC) is associated with a continuous increase in incidence, with high mortality rates in several countries. CD44, STAT3, and SOX2 are related to regulating of somatic cell division, tumorigenesis, and metastasis in BC. METHODS A cross-sectional study was carried out at the Hospital de Cancer de Pernambuco (HCP) between 2017 and 2018. Fifty-one women with locally advanced (LA) and 14 with metastatic BC were included in the study. RESULTS High CD44+/CD24neg and CD44+/CD24neg/SOX2+ levels in Luminal B (LB), HER2+, and triple-negative breast cancer (TNBC) compared with controls (p < 0.05). Low CD44+/CD24negSTAT3+ levels in LB, HER2+, and TNBC compared with controls (p < 0.05). High T lymphocytes, and low STAT3 + T, and SOX2 + T levels in BC patients (p < 0.05). High SOX2 + T levels in patients with axillary lymph node-negative (N0) compared with the axillary lymph node-positives (N1 and N2 groups; p < 0.05). High SOX2 + T levels in N1 compared to N2 (p < 0.05). High T lymphocytes and low SOX2 + T levels in the LA tumor compared to metastatic disease (p = 0.0007 and p = 0.02, respectively). High CD44 + /CD24negSTAT3+, and T lymphocyte levels in TNBC patients with LA tumor compared to metastatic (p < 0.05). Low STAT3 + T levels in TBNC patients with LA tumor compared to metastatic (p = 0.0266). CONCLUSION SOX2 and STAT3 expression on circulating T lymphocytes and CD44 + /CD24neg cells in peripheral blood have prognostic roles in breast cancer. SOX2 and STAT3 expression are potential predictive biomarkers of disease progression in breast cancer regardless of tumor subtype.
Collapse
Affiliation(s)
- Denise V Sobral
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Marcelo R T Salgado
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Mario R Martins
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | - Carolina de S Vasconcelos
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
| | - Carlos E C Anunciação
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- International Research Center, A.C. Camargo Cancer, CenterSão Paulo, Brazil
| | | | - Leuridan C Torres
- Translational Research Laboratory, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Sociedade Pernambucana de Combate ao Cancer, Hospital de Câncer de Pernambuco (HCP), Recife, Brazil
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Xie W, Yu J, Yin Y, Zhang X, Zheng X, Wang X. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol 2022; 12:876257. [PMID: 36033461 PMCID: PMC9399417 DOI: 10.3389/fonc.2022.876257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Octamer-binding transcription factor 4 (OCT4) is a key stem cell transcription factor involved in the development of various cancers. The role of OCT4 in ovarian cancer (OC) progression and its molecular mechanism are not fully understood. Methods First, immunohistochemistry (IHC) assays of ovarian benign cyst tissues, OC tissues, and omental metastatic tissues were performed to reveal OCT4 expression profiles. We knocked down OCT4 in two OC cell lines (SKOV3 and A2780) using a lentiviral vector and performed in vitro and in vivo experiments. OCT4 was knocked down to assess the proliferation, migration, and invasion of OC cells using CCK-8, colony formation, wound healing, and Transwell assays. In addition, the nude tumor mouse model was used for in vivo study. Mechanistically, we demonstrated that OCT4 influenced protein expression in the phosphoinositol 3-kinase (PI3K)/AKT/mTOR pathway and epithelial-mesenchymal transition (EMT)-related proteins by Western blotting and immunofluorescence (IF) assays. The interaction between OCT4 and p-AKT was further confirmed by coimmunoprecipitation (CoIP) assays. Importantly, AKT activation by its activator SC79 reversed the biological functions of OCT4 knockdown. Results OCT4 expression was significantly upregulated in OC samples and metastatic tissues. OCT4 knockdown notably inhibited the proliferation, migration, and invasion of OC cells in vitro and in vivo. Moreover, the expression of p-PI3K, p-AKT, and p-mTOR was downregulated after OCT4 knockdown. An AKT agonist reversed the effect of OCT4 knockdown on OC cells. EMT in OC samples was enhanced by OCT4. Conclusions Our study shows that OCT4 promotes the proliferation, migration, and invasion of OC cells by participating in the PI3K/AKT/mTOR signaling axis, suggesting that it could serve as a potential therapeutic target for OC patients.
Collapse
|
3
|
Zhou RT, Ni YR, Zeng FJ. The roles of long noncoding RNAs in the regulation of OCT4 expression. Stem Cell Res Ther 2022; 13:383. [PMID: 35907897 PMCID: PMC9338536 DOI: 10.1186/s13287-022-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
OCT4 is a major transcription factor that maintains the pluripotency of stem cells, including embryonic stem cells, induced pluripotent stem cells and cancer stem cells. An increasing number of long noncoding RNAs have been reported to participate in the regulation of OCT4 expression through various mechanisms, including binding with the OCT4 gene promoter to regulate local methylation; promoting chromosomal spatial folding to form an inner ring, thereby aggregating OCT4 cis-acting elements scattered in discontinuous sites of the chromosome; competitively binding microRNAs with OCT4 to upregulate OCT4 expression at the posttranscriptional level; and sharing a promoter with OCT4. Moreover, the transcription of some long noncoding RNAs is regulated by OCT4, and certain long noncoding RNAs form feedback regulatory loops with OCT4. In this review, we summarized the research progress of the long noncoding RNAs involved in the regulation of OCT4 expression.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China.,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.,Medical College, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi-Ran Ni
- Medical College, China Three Gorges University, Yichang, 443002, Hubei, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Fan-Jun Zeng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China. .,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|
4
|
Peng W, Chang L, Li W, Liu Y, Zhang M. OCT4 and SOX2 Specific Cytotoxic T Cells Exhibit Not Only Good Efficiency but Also Synergize PD-1 Inhibitor (Nivolumab) in Treating Breast Cancer Stem-Like Cells and Drug-Resistant Breast Cancer Mice. Front Oncol 2022; 12:781093. [PMID: 35402219 PMCID: PMC8987438 DOI: 10.3389/fonc.2022.781093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the effect of OCT4&SOX2 specific cytotoxic T lymphocytes (CTLs) plus programmed cell death protein-1 (PD-1) inhibitor (nivolumab) on treating breast cancer stem-like cells (BCSCs) in vitro and drug-resistance breast cancer (DRBC) mice in vivo. Methods In total, 160 breast cancer patients were enrolled following the immunofluorescence assay to detect tumor OCT4 and SOX2 expressions. CD154-activated B cells were co-cultured with CD8+ T cells (from breast cancer patients) in the presence of OCT4&SOX2 peptides, CMV pp65 peptides (negative control), and no peptides (normal control). MCF7-BCSCs were constructed by drug-resistance experiment and sphere-formation assay, then DRBC mice were constructed by planting MCF7-BCSCs. Subsequently, different doses of OCT4&SOX2 CTLs and PD-1 inhibitor (nivolumab) were used to treat MCF7-BCSCs and DRBC mice. Results OCT4 and SOX2 correlated with poor differentiation, more advanced stage, and worse prognosis in breast cancer patients. In vitro, OCT4&SOX2 CTLs with effector-target ratio (ETR) 5:1, 10:1 and 20:1 presented with increased cytotoxic activity compared to CMV pp65 CTLs with ETR 20:1 (negative control) and Control CTLs with ETR 20:1 (normal control) on killing MCF7-BCSCs. Besides, PD-1 inhibitor (nivolumab) improved the cytotoxic activity of OCT4&SOX2 CTLs against MCF7-BCSCs in a dose-dependent manner. In vivo, OCT4&SOX2 CTLs plus PD-1 inhibitor (nivolumab) decreased tumor volume and tumor weight while increased tumor apoptosis rate compared to OCT4&SOX2 CTLs alone, PD-1 inhibitor (nivolumab) alone, and control. Conclusion OCT4&SOX2 CTLs exhibit good efficiency and synergize PD-1 inhibitor (nivolumab) in treating BCSCs and DRBC.
Collapse
Affiliation(s)
- Wei Peng
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Liang Chang
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Wenqiang Li
- Department of General Surgery, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Yanan Liu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
- *Correspondence: Yanan Liu, ; Min Zhang,
| | - Min Zhang
- Department of General Surgery, Cixi People’s Hospital, Ningbo, China
- *Correspondence: Yanan Liu, ; Min Zhang,
| |
Collapse
|
5
|
Modi A, Purohit P, Roy D, Vishnoi JR, Pareek P, Elhence P, Singh P, Sharma S, Sharma P, Misra S. FOXM1 mediates GDF-15 dependent stemness and intrinsic drug resistance in breast cancer. Mol Biol Rep 2022; 49:2877-2888. [PMID: 35066766 DOI: 10.1007/s11033-021-07102-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stemness, a key component of breast cancer (BC) heterogeneity, is responsible for chemoresistance. Growth differentiation factor-15 (GDF-15) induces drug resistance and stemness in BC cells. In this study, the expressions and interactions of GDF-15, FOXM1, and stemness (OCT4 and SOX2), and drug resistance (ABCC5) markers were evaluated in BC. METHODS AND RESULTS 40 diagnosed BC patients and 40 healthy controls were included in this study. Serum GDF-15 was significantly raised (p < 0.001) in BC patients. Expressions of GDF-15, OCT4, SOX2, and FOXM1 in BC tissue and cell lines (MCF-7 and MDA-MB-231) were determined by RT-PCR, while phosphorylated AKT (p-AKT) was analyzed by Western blot. Not only were the fold change expressions higher in cancer tissue as compared to surrounding control tissue, but a higher expression was observed for all the genes along with p-AKT in MDA-MB-231 cells compared to MCF-7. Tissue GDF-15 was significantly associated with ABCC5 (p < 0.001), OCT4 (p = 0.002), SOX2 (p < 0.001), and FOXM1 (p < 0.001). To further analyze the signaling pathway involved in stemness and drug resistance in BC, GDF-15 knockdown was performed, which reduced the expression of p-AKT, FOXM1, OCT4 and SOX2, and ABCC5, whereas recombinant GDF-15 treatment reversed the same. In silico analyses in UALCAN revealed a similar picture for these genes to that of BC tissue expression. CONCLUSIONS GDF-15 promotes stemness and intrinsic drug resistance in BC, possibly mediated by the p-AKT/FOXM1 axis.
Collapse
Affiliation(s)
- Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India.
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Jeewan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Puneet Pareek
- Department of Radiotherapy, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Poonam Elhence
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Priyanka Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology (IIT), Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| |
Collapse
|
6
|
He H, Zheng C, Tang Y. Overexpression of SMC4 predicts a poor prognosis in cervical cancer and facilitates cancer cell malignancy phenotype by activating NF-κB pathway. Hum Cell 2021; 34:1888-1898. [PMID: 34480271 DOI: 10.1007/s13577-021-00603-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Cervical cancer is one of the leading female malignancy tumors worldwide. Structural maintenance of chromosomes 4 (SMC4), a member of the SMC family, is associated with cancer pathogenesis and progression. However, the role of SMC4 in cervical cancer is still unclear. In the study, SMC4 was increased in cervical cancer tissues compared with adjacent normal tissues. The SMC4 knockdown and overexpression were performed in cervical cancer cells. SMC4 knockdown inhibited cell proliferation, colony formation, cell migration and invasion, and suppressed epithelial-mesenchymal transition (EMT). Conversely, SMC4 overexpression exerted opposite effects. Moreover, SMC4 knockdown down-regulated stem cell markers, reduced the capacity of spheroid formation and inactivated NF-κB pathway. SMC4 overexpression contributed to stem cell markers, and stimulated spheroid formation and NF-κB pathway activation. Additionally, BAY11-7082 (an NF-κB inhibitor) alleviated the SMC4-mediated the effects in cervical cancer cells. In conclusion, these findings demonstrated that SMC4 overexpression facilitated the development of cervical cancer cells by activating NF-κBpathway, which provides a new therapeutic target for patients with cervical cancer.
Collapse
Affiliation(s)
- Hui He
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, No. 16, Baita West Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| | - Cui Zheng
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, No. 16, Baita West Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Yunxian Tang
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, No. 16, Baita West Road, Gusu District, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
7
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
8
|
He D, Zhang X, Tu J. Diagnostic significance and carcinogenic mechanism of pan-cancer gene POU5F1 in liver hepatocellular carcinoma. Cancer Med 2020; 9:8782-8800. [PMID: 32978904 PMCID: PMC7724499 DOI: 10.1002/cam4.3486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prognostic and clinicopathological significance of POU Class 5 Homeobox 1 (POU5F1) among various cancers are disputable heretofore. The diagnostic value and functional mechanism of POU5F1 in liver hepatocellular carcinoma (LIHC) have not been studied thoroughly. METHODS An integrative strategy of meta-analysis, bioinformatics, and wet-lab approach was used to explore the diagnostic and prognostic significance of POU5F1 in various types of tumors, especially in LIHC. Meta-analysis was utilized to investigate the impact of POU5F1 on prognosis and clinicopathological parameters in various cancers. The expression level and diagnostic value of POU5F1 were assessed by qPCR in plasma collected from LIHC patients and controls. The correlation between POU5F1 and tumor infiltrating immune cells (TIICs) in LIHC was evaluated by CIBERSORT. Gene set enrichment analysis (GSEA) was performed based on TCGA. Hub genes and related pathways were identified on the basis of co-expression genes of POU5F1. RESULTS Elevated POU5F1 was associated with poor OS, DFS, RFS, and DSS in various cancers. POU5F1 was confirmed as an independent risk factor for LIHC and correlated with tumor occurrence, stage, and invasion depth. The combination of POU5F1 and AFP in plasma was with high diagnostic validity (AUC = 0.902, p < .001). Specifically, the level of POU5F1 was correlated with infiltrating levels of B cells, T cells, dendritic cells, and monocytes in LIHC. GSEA indicated that POU5F1 participated in multiple cancer-related pathways and cell proliferation pathways. Moreover, CBX3, CCHCR1, and NFYC were filtered as the central hub genes of POU5F1. CONCLUSION Our study identified POU5F1 as a pan-cancer gene that could not only be a prognostic and diagnostic biomarker in various cancers, especially in LIHC, but functionally carcinogenic in LIHC.
Collapse
Affiliation(s)
- Dingdong He
- Center for Gene Diagnosis, and Clinical LabZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Clinical LabZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiancheng Tu
- Center for Gene Diagnosis, and Clinical LabZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Dirican E, Kankaya B, Büyükaşık S, Alış H, Velidedeoğlu M, İlvan S, İlvan A. Investigation of alterations in PIK3CA and OCT-4 gene expression in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Hachim MY, Hachim IY, Talaat IM, Yakout NM, Hamoudi R. M1 Polarization Markers Are Upregulated in Basal-Like Breast Cancer Molecular Subtype and Associated With Favorable Patient Outcome. Front Immunol 2020; 11:560074. [PMID: 33304345 PMCID: PMC7701279 DOI: 10.3389/fimmu.2020.560074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breast cancer heterogeneity is an essential element that plays a role in the therapy response variability and the patient's outcome. This highlights the need for more precise subtyping methods that focus not only on tumor cells but also investigate the profile of stromal cells as well as immune cells. OBJECTIVES To mine publicly available transcriptomic breast cancer datasets and reanalyze their transcriptomic profiling using unsupervised clustering in order to identify novel subsets in molecular subtypes of breast cancer, then explore the stromal and immune cells profile in each subset using bioinformatics and systems immunology approaches. MATERIALS AND METHODS Transcriptomic data from 1,084 breast cancer patients obtained from The Cancer Genome Atlas (TCGA) database were extracted and subjected to unsupervised clustering using a recently described, multi-step algorithm called Iterative Clustering and Guide-gene Selection (ICGS). For each cluster, the stromal and immune profile was investigated using ESTIMATE and CIBERSORT analytical tool. Clinical outcomes and differentially expressed genes of the characterized clusters were identified and validated in silico and in vitro in a cohort of 80 breast cancer samples by immunohistochemistry. RESULTS Seven unique sub-clusters showed distinct molecular and clinical profiles between the well-known breast cancer subtypes. Those unsupervised clusters identified more homogenous subgroups in each of the classical subtypes with a different prognostic profile. Immune profiling of the identified clusters showed that while the classically activated macrophages (M1) are correlated with the more aggressive basal-like breast cancer subtype, the alternatively activated macrophages (M2) showed a higher level of infiltration in luminal A and luminal B subtypes. Indeed, patients with higher levels of M1 expression showed less advanced disease and better patient outcomes presented as prolonged overall survival. Moreover, the M1 high basal-like breast cancer group showed a higher expression of interferon-gamma induced chemokines and guanylate-binding proteins (GBPs) involved in immunity against microbes. CONCLUSION Adding immune profiling using transcriptomic data can add precision for diagnosis and prognosis and can cluster patients according to the available modalities of therapy in a more personalized approach.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada M. Yakout
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
11
|
Zhao X, Lu H, Sun Y, Liu L, Wang H. Prognostic value of octamer binding transcription factor 4 for patients with solid tumors: A meta-analysis. Medicine (Baltimore) 2020; 99:e22804. [PMID: 33080755 PMCID: PMC7571959 DOI: 10.1097/md.0000000000022804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Octamer binding transcription factor 4 (Oct4) is critically important in the development and progression of cancer, and is considered a potential biomarker for tumor prognosis. However, the prognostic value of Oct4 in patients with solid tumors remains elusive. Herein, we conducted a meta-analysis to assess the prognostic value of Oct4 in patients with solid tumors. METHODS We conducted a literature search on PubMed, Embase, and Web of Science databases to retrieve comprehensive and eligible studies published until December 2019. The study was conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS)/progress-free survival (PFS) were used to evaluate the prognostic value of Oct4 in patients with solid tumors via either random or fixed-effects models. RESULTS In total, 36 studies with 5198 patients were included in the meta-analysis. Notably, elevated Oct4 expression was associated with worse OS (pooled HR: 2.02, 95% CI: 1.55-2.62, P < .001) and DFS/RFS/PFS (pooled HR: 2.34, 95% CI: 1.88-2.92, P < .001). CONCLUSION This work demonstrated that patients with solid tumors show high expression of Oct4 which is linked to worse prognosis in patients with solid tumors including hepatocellular carcinoma (OS, DFS/RFS/PFS), esophageal squamous cell carcinoma (OS), gastric cancer (OS), cervical cancer (OS, DFS/RFS/PFS), and colorectal cancer (OS, DFS/RFS/PFS), this implicated Oct4 as a potential biomarker to predict the prognosis of tumors.
Collapse
Affiliation(s)
| | | | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College
| | - Li Liu
- Department of Epidemiology and Biostatistics, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
12
|
Chen F, Zhu L, Hu J, Jiang S, Liu H, Zheng J, Wang J, Wang F, Li Z. Bufalin attenuates triple-negative breast cancer cell stemness by inhibiting the expression of SOX2/OCT4. Oncol Lett 2020; 20:171. [PMID: 32934738 PMCID: PMC7471667 DOI: 10.3892/ol.2020.12028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the poorest prognosis among all types of breast cancer and there is yet no effective therapy. Chemotherapy is the traditional standard of care for patients with TNBC; however, treatment of TNBC with chemotherapy may lead to the enrichment of cancer stem cells (CSCs), which exhibitan enhanced capacity for self-renewal, tumor initiation and metastasis. The present study demonstrated that bufalin, a small molecular compound used in traditional Chinese medicine, exerted anticancer effects on a wide range of cancer cell lines, inhibited cell proliferation through inducing G2/M cell cycle arrest, and triggered apoptosis in the TNBC cell lines MDA-MB-231 and HCC-1937. Consistently, bufalin markedly suppressed TNBC growth in a cell line-derived xenograft model. More importantly, unlike common chemotherapeutic drugs, bufalin reduced the stemness of TNBC stem cells. A mechanistic study suggested that bufalin may suppress the proliferation of TNBC stem cells by inhibiting the expression of octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2) in MDA-MB-231 and HCC-1937 cells. These results indicated that bufalin may hold promise as a therapeutic agent in TNBC, and its effects may be mediated through the SOX2/OCT4 axis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Li Zhu
- Department of General surgery, General Hospital of PLA, Beijing 100853, P.R. China
| | - Junyan Hu
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shujun Jiang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui Liu
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Zheng
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jiandong Wang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Feng Wang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhe Li
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
13
|
Gaponova AV, Rodin S, Mazina AA, Volchkov PV. Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae 2020; 12:4-23. [PMID: 33173593 PMCID: PMC7604894 DOI: 10.32607/actanaturae.11010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cell-cell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelial-mesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.
Collapse
Affiliation(s)
- A. V. Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - S. Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177 Sweden
| | - A. A. Mazina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - P. V. Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| |
Collapse
|
14
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
15
|
Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. NANO RESEARCH 2020; 13:1693-1703. [PMID: 33304449 PMCID: PMC7723362 DOI: 10.1007/s12274-020-2795-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Despite improvements in our understanding of the biology behind triple-negative breast cancer (TNBC), it remains a devastating disease due to lack of an effective targeted therapy. Inhibiting Wnt signaling is a promising strategy to combat TNBC because Wnt signaling drives TNBC progression, chemoresistance, and stemness. However, Wnt inhibition can lead to upregulation of autophagy, which confers therapeutic resistance. This provides an opportunity for combination therapy, as autophagy inhibitors applied concurrently with Wnt inhibitors could increase treatment efficacy. Here, we applied the autophagy inhibitor chloroquine (CQ) to TNBC cells in combination with Frizzled7 antibody-coated nanoshells (FZD7-NS) that suppress Wnt signaling by blocking Wnt ligand/FZD7 receptor interactions, and evaluated this dual treatment in vitro. We found that FZD7-NS can inhibit Axin2 and CyclinD1, two targets of canonical Wnt signaling, and increase the expression of LC3, an autophagy marker. When FZD7-NS and CQ are applied together, they reduce the expression of several stemness genes in TNBC cells, leading to inhibition of TNBC cell migration and self-renewal. Notably, co-delivery of FZD7-NS and CQ is more effective than either therapy alone or the combination of CQ with free FZD7 antibodies. This demonstrates that the nanocarrier design is important to its therapeutic utility. Overall, these findings indicate that combined regulation of Wnt signaling and autophagy by FZD7-NS and CQ is a promising strategy to combat TNBC.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
16
|
Zhao G, Wang X, Qu L, Zhu Z, Hong J, Hou H, Li Z, Wang J, Lv Z. The Clinical and Molecular Characteristics of Sex-Determining Region Y-Box 2 and its Prognostic Value in Breast Cancer: A Systematic Meta-Analysis. Breast Care (Basel) 2020; 16:16-26. [PMID: 33716628 DOI: 10.1159/000505806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Transcription factor SOX2 (sex-determining region Y-box 2) has a crucial role in the maintenance of the stem cell state. However, current evidence regarding the role of SOX2 in breast cancer is conflicting. We conducted this meta-analysis to clarify the association of SOX2 expression with clinical and molecular features and its prognostic effect on breast cancer. Methods All relevant articles were searched using electronic databases. The pooled odds ratios (ORs) or hazard ratios (HRs: multivariate Cox survival analysis) with their 95% confidence intervals (CIs) were calculated. Results A final total of 18 studies containing 3,080 patients with breast cancer were included. SOX2 protein expression was not related to age, menopausal status, lymph node metastasis, lymphovascular invasion, molecular estrogen receptor status, progesterone receptor status, triple-negative status, and the overall survival in breast cancer, but was closely associated with advanced tumor grade (grade 3 vs. grade 1-2: OR = 2.74, 95% CI = 1.85-4.06, p < 0.001), clinical stage (stage 3-4 vs. stage 0-2: OR = 2.46, 95% CI = 1.37-4.40, p = 0.002), pT stage (T stage 2-4 vs. T stage 1: OR = 1.52, 95% CI = 1.07-2.17, p = 0.019), molecular human epidermal growth factor receptor 2 (HER2) status (positive vs. negative: OR = 1.61, 95% CI = 1.21-2.14, p = 0.001), epidermal growth factor receptor (EGFR) status (positive vs. negative: OR = 2.21, 95% CI = 1.13-4.33, p = 0.021), and worse disease-free survival (DFS) (HR = 2.66, 95% CI = 1.20-5.91, p = 0.016) of breast cancer. Conclusions SOX2 expression is correlated with breast cancer progression, HER2 status, and EGFR status, and may be an independent prognostic marker for predicting poor DFS.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Limei Qu
- Department of Pathology, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhu Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Haiqin Hou
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zuonong Li
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jun Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center, the First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Wang S, Liu X, Chen Y, Zhan X, Wu T, Chen B, Sun G, Yan S, Xu L. The role of SOX2 overexpression in prognosis of patients with solid tumors: A meta-analysis and system review. Medicine (Baltimore) 2020; 99:e19604. [PMID: 32221082 PMCID: PMC7220337 DOI: 10.1097/md.0000000000019604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Many studies have been done to reported the value of SRY-related HMG-box Gene 2 (SOX2) in prognosis of solid tumors. But results were not particularly consistent among these studies because of the limitations of the small sample data. METHODS We searched relevant studies published before November 2018 by PubMed, Web of Science and EMBASE. In this meta-analysis, hazard ratio (HR) values for overall survival (OS) were cumulatively pooled and quantitatively analyzed. RESULTS A meta-analysis based on 12 studies with 3318 patients was conducted to assess the potential correlation between SOX2 overexpression and OS in human solid tumors. A total of 12 studies (n = 3318) were assessed in the meta-analysis. It suggested that the high expression of SOX2 obviously indicates poor survival and prognosis in both univariate and multivariate analysis. In the univariate analysis, the combined HR for OS was 1.66 (95% confidence interval [CI]: 1.46-1.89, P < .001). The pooled HR of multivariate analysis for OS was 1.51 (95% confidence interval [CI]: 1.32-1.71, P < .001). CONCLUSIONS This meta-analysis indicated that the high expression level of SOX2 is significantly associated with a decline in survival of human with solid tumors. On the basis of the expression level in solid tumors, SOX2 is expected to be a meaningful prognostic biomarker and effective therapeutic target.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
| | - Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Ying Chen
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
| | - Xiaozhen Zhan
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
| | - Tujin Wu
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
| | - Bing Chen
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
| | - Guangwen Sun
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Songling Yan
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Lin Xu
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| |
Collapse
|
18
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
19
|
Bao C, Chen J, Kim JT, Qiu S, Cho JS, Lee HJ. Amentoflavone inhibits tumorsphere formation by regulating the Hedgehog/Gli1 signaling pathway in SUM159 breast cancer stem cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Park S, Hwang D, Yeo YS, Kim H, Kang J. CONFIGURE: A pipeline for identifying context specific regulatory modules from gene expression data and its application to breast cancer. BMC Med Genomics 2019; 12:97. [PMID: 31296219 PMCID: PMC6624175 DOI: 10.1186/s12920-019-0515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gene expression data is widely used for identifying subtypes of diseases such as cancer. Differentially expressed gene analysis and gene set enrichment analysis are widely used for identifying biological mechanisms at the gene level and gene set level, respectively. However, the results of differentially expressed gene analysis are difficult to interpret and gene set enrichment analysis does not consider the interactions among genes in a gene set. RESULTS We present CONFIGURE, a pipeline that identifies context specific regulatory modules from gene expression data. First, CONFIGURE takes gene expression data and context label information as inputs and constructs regulatory modules. Then, CONFIGURE makes a regulatory module enrichment score (RMES) matrix of enrichment scores of the regulatory modules on samples using the single-sample GSEA method. CONFIGURE calculates the importance scores of the regulatory modules on each context to rank the regulatory modules. We evaluated CONFIGURE on the Cancer Genome Atlas (TCGA) breast cancer RNA-seq dataset to determine whether it can produce biologically meaningful regulatory modules for breast cancer subtypes. We first evaluated whether RMESs are useful for differentiating breast cancer subtypes using a multi-class classifier and one-vs-rest binary SVM classifiers. The multi-class and one-vs-rest binary classifiers were trained using the RMESs as features and outperformed baseline classifiers. Furthermore, we conducted literature surveys on the basal-like type specific regulatory modules obtained by CONFIGURE and showed that highly ranked modules were associated with the phenotypes of basal-like type breast cancers. CONCLUSIONS We showed that enrichment scores of regulatory modules are useful for differentiating breast cancer subtypes and validated the basal-like type specific regulatory modules by literature surveys. In doing so, we found regulatory module candidates that have not been reported in previous literature. This demonstrates that CONFIGURE can be used to predict novel regulatory markers which can be validated by downstream wet lab experiments. We validated CONFIGURE on the breast cancer RNA-seq dataset in this work but CONFIGURE can be applied to any gene expression dataset containing context information.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Doyeong Hwang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Yoon Sun Yeo
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea. .,Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Darbeheshti F, Rezaei N, Amoli MM, Mansoori Y, Tavakkoly Bazzaz J. Integrative analyses of triple negative dysregulated transcripts compared with non-triple negative tumors and their functional and molecular interactions. J Cell Physiol 2019; 234:22386-22399. [PMID: 31081218 DOI: 10.1002/jcp.28804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative (TN) tumors are a subtype of breast cancer with aggressive behaviors and limited targeted therapies. Microarray studies were not concerned with interactions and functional relations of dysregulated transcripts. Here, we aimed to conduct integrative strategy to analyze gene and miRNA available microarray data as well as bioinformatic analyses to catch a more inclusive picture of pivotal dysregulated transcripts and their interactions in TN tumors. Several online datasets and offline bioinformatic tools were used to detect differentially expressed (DE) transcripts, both protein and nonprotein coding, in TN compared with non-TN tumors and their functional and molecular interactions. Sixteen upregulated and 58 downregulated genes with a log fold change higher or equal to | 2 | were identified, including nine transcription factors. Coexpression network revealed EN1 as a hub gene, moreover Kaplan-Meier plotter survival analysis indicated that it was an appropriate prognostic marker for TN patients with breast cancer. Functional annotation analysis of protein-protein interaction network showed FOXM1 as an upexpressed and ESR1 as a downexpressed hub genes are suitable targets as far as antitumor protein therapy is concerned in TN breast cancers. The consensus analysis of two microRNA datasets revealed seven DE miRNAs. The gene-transcriptional factor (TF)-miRNA network revealed mir-135b and mir-29b are the hub nodes and involved in feedback loops with GATA3. This study suggests that dysregulated TFs and miRNAs have pivotal roles in regulation of TN oncotranscriptomic profile and might become both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Gliagias V, Wotman M, Herman SW, Costantino P, Kraus D, Tham T. Investigating the role of octamer binding transcription Factor-4 (Oct-4) in oral cavity squamous cell carcinoma: A systematic review and meta-analysis. Am J Otolaryngol 2019; 40:282-288. [PMID: 30595225 DOI: 10.1016/j.amjoto.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Vasiliki Gliagias
- Department of Otolaryngology, Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Michael Wotman
- Department of Otolaryngology, Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Saori Wendy Herman
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Peter Costantino
- Department of Otolaryngology, Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Dennis Kraus
- Department of Otolaryngology, Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Tristan Tham
- Department of Otolaryngology, Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States of America.
| |
Collapse
|
23
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
24
|
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC, Tiwari AK, Raman D. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol 2019; 9:1311. [PMID: 31867270 PMCID: PMC6909344 DOI: 10.3389/fonc.2019.01311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are intrinsically chemoresistant and capable of self-renewal. Following chemotherapy, patients can develop minimal residual disease due to BCSCs which can repopulate into a relapsed tumor. Therefore, it is imperative to co-target BCSCs along with the bulk tumor cells to achieve therapeutic success and prevent recurrence. So, it is vital to identify actionable molecular targets against both BCSCs and bulk tumor cells. Previous findings from our lab and others have demonstrated that inhibition of the emerging drug target eIF4A with Rocaglamide A (RocA) was efficacious against triple-negative breast cancer cells (TNBC). RocA specifically targets the pool of eIF4A bound to the oncogenic mRNAs that requires its helicase activity for their translation. This property enables specific targeting of tumor cells. The efficacy of RocA against BCSCs is unknown. In this study, we postulated that eIF4A could be a vulnerable node in BCSCs. In order to test this, we generated a paclitaxel-resistant TNBC cell line which demonstrated an elevated level of eIF4A along with increased levels of cancer stemness markers (ALDH activity and CD44), pluripotency transcription factors (SOX2, OCT4, and NANOG) and drug transporters (ABCB1, ABCG2, and ABCC1). Furthermore, genetic ablation of eIF4A resulted in reduced expression of ALDH1A1, pluripotency transcription factors and drug transporters. This pointed out that eIF4A is likely associated with selected set of proteins that are critical to BCSCs, and hence targeting eIF4A may eliminate BCSCs. Therefore, we isolated BCSCs from two TNBC cell lines: MDA-Bone-Un and SUM-159PT. Following RocA treatment, the self-renewal ability of the BCSCs was significantly reduced as determined by the efficiency of the formation of primary and secondary mammospheres. This was accompanied by a reduction in the levels of NANOG, OCT4, and drug transporters. Exposure to RocA also induced cell death of the BCSCs as evaluated by DRAQ7 and cell viability assays. RocA treatment induced apoptosis with increased levels of cleaved caspase-3. Overall, we identified that RocA is effective in targeting BCSCs, and eIF4A is an actionable molecular target in both BCSCs and bulk tumor cells. Therefore, anti-eIF4A inhibitors could potentially be combined synergistically with existing chemo-, radio- and/or immunotherapies.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Megan Robeson
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Diwakar Bastihalli-Tukaramrao
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus M. C. Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
- *Correspondence: Dayanidhi Raman
| |
Collapse
|
25
|
Yang F, Zhang J, Yang H. OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2 + breast cancer patients. Onco Targets Ther 2018; 11:7873-7881. [PMID: 30464534 PMCID: PMC6228048 DOI: 10.2147/ott.s173522] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective This study aimed to evaluate the correlations of expression of OCT4, SOX2, and NANOG with clinicopathological features and overall survival (OS) in human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) patients. Methods One hundred and thirty-four surgical HER2+ BC patients who received doxorubicin and cyclophosphamide followed by paclitaxel and trastuzumab adjuvant therapy were enrolled in this study. Immunofluorescence assay was used to detect OCT4, SOX2, and NANOG expressions. The median follow-up duration was 104 months, and the last follow-up date was December 31, 2017. Results The expressions of OCT4 (P=0.001), SOX2 (P=0.003), and NANOG (P=0.005) were higher in tumor tissues compared with paired adjacent tissues. OCT4 positive expression was associated with poor pathological differentiation (P=0.028), larger tumor size (P=0.022), advanced N stage (P<0.001), and higher TNM stage (P<0.001). SOX2 positive expression was correlated with poor pathological differentiation (P=0.005), larger tumor size (P=0.013), and increased T stage (P=0.024). NANOG positive expression was associated with poor pathological differentiation (P=0.028), higher N stage (P=0.001), and elevated TNM stage (P=0.001). Kaplan–Meier curves disclosed that OCT4 (P=0.001) and NANOG (P=0.001) positive expressions were associated with worse OS, while SOX2 (P=0.058) positive expression was only numerically correlated with poor OS, but without statistical significance. Further analyses revealed that co-expression of these three biomarkers disclosed even better predictive value for shorter OS. Conclusion OCT4, SOX2, and NANOG positive expressions correlate with poor differentiation and advanced disease stage, and OCT4 and NANOG present with predictive values for poor OS in HER2+ BC patients.
Collapse
Affiliation(s)
- Fan Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jiaming Zhang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Hua Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|