1
|
Nguyen TPM, Woods SL, Secombe KR, Tang S, Elz AS, Ayton S, Finnie J, Nagpal A, Pouliot N, Bowen JM. Ferroptosis - a potential feature underlying neratinib-induced colonic epithelial injury. Cancer Chemother Pharmacol 2024; 94:493-505. [PMID: 39002022 PMCID: PMC11438713 DOI: 10.1007/s00280-024-04699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.
Collapse
Affiliation(s)
- Triet P M Nguyen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kate R Secombe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Aurelia S Elz
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Aadya Nagpal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Normand Pouliot
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Bowen J, Braga S, Zotto VD, Finnie J, DiPrimeo D, Cooke B, Bischof GF, Wong A, Di Palma JA. Preclinical and clinical evaluation through serial colonoscopic evaluation of neratinib-induced diarrhea in HER2-positive breast cancer-A pilot study. Physiol Rep 2024; 12:e70008. [PMID: 39187401 PMCID: PMC11347019 DOI: 10.14814/phy2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
The irreversible pan-HER tyrosine kinase inhibitor neratinib is approved for patients with HER2-positive, early-stage and metastatic breast cancer (BC). Neratinib-associated diarrhea is the most common reason for early discontinuation. Preclinical studies identified mechanisms of neratinib-induced diarrhea and rationale for prophylactic and preventive measures. We studied effects of neratinib on rat intestines and conducted a phase 2 study of colon pathogenesis in patients with HER2-positive BC treated with neratinib (NCT04366713). Colon samples from female albino Wistar rats receiving neratinib or vehicle were examined for histopathological changes. Patients with HER2-positive BC received neratinib 240 mg once daily for up to 1 year. Colonoscopy biopsies were collected at baseline and at Day 28 to identify changes consistent with rat pathologies. Rat colons were markedly altered in appearance, with similar short circuit currents (Isc) and responses to carbachol and forskolin. Mucosal barrier loss and/or significant increase in secretory propensity in neratinib- versus control-treated animals were not seen. Two of four endpoint-evaluable patients presented with mild pathological changes, largely comparable with the rat model. Preclinical evidence supports an inflammatory component of neratinib-induced diarrhea without mucosal barrier function loss. Colonoscopy findings in patients with BC indicate mild or no pathological changes in the colon due to neratinib treatment.
Collapse
Affiliation(s)
- Joanne Bowen
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sofia Braga
- Medical OncologyHospital Prof. Doutor Fernando Fonseca, EPEAmadoraPortugal
| | - Valeria Dal Zotto
- Department of PathologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - John Finnie
- Division of Research and InnovationUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Blaire Cooke
- Puma Biotechnology, Inc.Los AngelesCaliforniaUSA
| | | | - Alvin Wong
- Puma Biotechnology, Inc.Los AngelesCaliforniaUSA
| | - Jack A. Di Palma
- Division of GastroenterologyUniversity of South Alabama, College of MedicineMobileAlabamaUSA
| |
Collapse
|
3
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
4
|
Liu J, Yan S, Du J, Teng L, Yang R, Xu P, Tao W. Mechanism and treatment of diarrhea associated with tyrosine kinase inhibitors. Heliyon 2024; 10:e27531. [PMID: 38501021 PMCID: PMC10945189 DOI: 10.1016/j.heliyon.2024.e27531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become first-line drugs for cancer treatment. However, their clinical use is seriously hindered since many patients experience diarrhea after receiving TKIs. The mechanisms of TKI-associated diarrhea remain unclear. Most existing therapies are symptomatic treatments based on experience and their effects are unsatisfactory. Therefore, clarification of the mechanisms underlying diarrhea is critical to develop effective anti-diarrhea drugs. This article summarizes several potential mechanisms of TKI-associated diarrhea and reviews current treatment progress.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Juntong Du
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Ru Yang
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| |
Collapse
|
5
|
Lai J, Zhuo X, Yin K, Jiang F, Liu L, Xu X, Liu H, Wang J, Zhao J, Xu W, Yang S, Guo H, Yuan X, Lin X, Qi F, Fu G. Potential mechanism of pyrotinib-induced diarrhea was explored by gut microbiome and ileum metabolomics. Anticancer Drugs 2023; 34:747-762. [PMID: 36378136 DOI: 10.1097/cad.0000000000001440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyrotinib is a novel epidermal growth factor receptor/human epidermal growth factor receptor-2 (HER2) tyrosine kinase inhibitor that exhibited clinical efficacy in patients with HER2-positive breast cancer and HER2-mutant/amplified lung cancer. However, severe diarrhea adverse responses preclude its practical use. At present, the mechanism of pyrotinib-induced diarrhea is unknown and needs further study. First, to develop a suitable and reproducible animal model, we compared the effects of different doses of pyrotinib (20, 40, 60 and 80 mg/kg) in Wistar rats. Second, we used this model to examine the intestinal toxicity of pyrotinib. Finally, the mechanism underlying pyrotinib-induced diarrhea was fully studied using gut microbiome and host intestinal tissue metabolomics profiling. Reproducible diarrhea occurred in rats when they were given an 80 mg/kg daily dose of pyrotinib. Using the pyrotinib-induced model, we observed that Lachnospiraceae and Acidaminococcaceae decreased in the pyrotinib groups, whereas Enterobacteriaceae, Helicobacteraceae and Clostridiaceae increased at the family level by 16S rRNA gene sequence. Multiple bioinformatics methods revealed that glycocholic acid, ursodeoxycholic acid and cyclic AMP increased in the pyrotinib groups, whereas kynurenic acid decreased, which may be related to the pathogenesis of pyrotinib-induced diarrhea. Additionally, pyrotinib-induced diarrhea may be associated with a number of metabolic changes mediated by the gut microbiome, such as Primary bile acid biosynthesis. We reported the establishment of a reproducible pyrotinib-induced animal model for the first time. Furthermore, we concluded from this experiment that gut microbiome imbalance and changes in related metabolites are significant contributors to pyrotinib-induced diarrhea.
Collapse
Affiliation(s)
- Jingjiang Lai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Xiaoli Zhuo
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Ke Yin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
| | - Fengxian Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Lei Liu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Xiaoying Xu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
| | - Hongjing Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Jingliang Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Jing Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | | | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Honglin Guo
- Department of Central Laboratory, Shandong Provincial Hospital
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | | | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine
- Department of Pathology
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Oncology
| |
Collapse
|
6
|
The conundrum of breast cancer and microbiome - A comprehensive review of the current evidence. Cancer Treat Rev 2022; 111:102470. [DOI: 10.1016/j.ctrv.2022.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
|
7
|
Secombe KR, Ball IA, Wignall AD, Bateman E, Keefe DM, Bowen JM. Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. Neoplasia 2022; 30:100806. [PMID: 35561424 PMCID: PMC9111977 DOI: 10.1016/j.neo.2022.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Background Neratinib is a pan-ErbB tyrosine kinase inhibitor used for extended adjuvant treatment of HER2-positive breast cancer. Diarrhea is the main adverse event associated with neratinib treatment. We aimed here to determine whether antibiotic-induced gut microbial shifts altered development of neratinib-induced diarrhea. Methods Female Albino Wistar rats (total n = 44) were given antibiotics (vancomycin, neomycin, or a cocktail of vancomycin, neomycin and ampicillin) in drinking water for four weeks, and then treated daily with neratinib (50 mg/kg) for 28 days. Diarrhea, along with markers of gastrointestinal damage and microbial alterations were measured by histopathology and 16S sequencing, respectively. Results Rats treated with vancomycin or neomycin had significantly lower levels of diarrhea than rats treated with neratinib alone. In the distal ileum, neratinib was associated with a statistically significant increase in histological damage in all treatment groups expect the antibiotic cocktail. Key features included villous blunting and fusion and some inflammatory infiltrate. Differences in microbial composition at necropsy in vehicle control, neratinib and neratinib + neomycin groups, were characterized by a neratinib-induced increase in gram-negative bacteria that was reversed by neomycin. Neomycin shifted bacterial composition so that Blautia become the dominant genus. Conclusions Narrow spectrum antibiotics reduced neratinib-induced diarrhea. This suggests that the microbiome may play a key role in the development and prolongation of diarrhea following neratinib treatment, although further research is required to understand the key bacteria and mechanisms by which they reduce diarrhea, as well as how this may impact presentation of diarrhea in clinical cohorts.
Collapse
Affiliation(s)
- Kate R Secombe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Imogen A Ball
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony D Wignall
- Division of Health Sciences, University of South Australia, South Australia, Australia
| | - Emma Bateman
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Tao G, Dagher F, Ghose R. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicol Res (Camb) 2022; 11:184-194. [PMID: 35237423 PMCID: PMC8882787 DOI: 10.1093/toxres/tfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neratinib is a pan-HER tyrosine kinase inhibitor newly approved by FDA in 2017 to treat HER2-positive breast cancer, but the phase III trial of neratinib showed that 96% of the patients taking neratinib experienced diarrhea. So far very few mechanistic studies explore neratinib-induced gastrointestinal (GI) toxicity. Hereby, we performed toxicity studies in mice to characterize the potential mechanism underlying this adverse effect. C57BL/6 J mice were separated into three groups A, B, C. Group A received vehicle; group B was orally dosed with 100 mg/kg neratinib once daily for 18 days. Group C was dosed with 100 mg/kg neratinib for 12 days and switched to vehicle for 6 days. Intestine and liver were collected for further analysis. Human intestine-derived cells were treated with neratinib in vitro. Our results showed that 12 days treatment of neratinib caused persistent histological damage in mouse GI tract. Both gene expression and activity of Cyp3a11, the major enzyme metabolizing neratinib in mice was reduced in small intestine. The gene expression of proinflammatory cytokines increased throughout the GI tract. Such damages were not recovered after 6 days without neratinib treatment. In addition, in vitro data showed that neratinib was potent in killing human intestine-derived cell lines. Based on such findings, we hypothesized that neratinib downregulates intestinal CYP3A enzyme to cause excessive drug disposition, eventually leading to gut injury.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Romi Ghose
- Correspondence address. Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health Building 2, Room 7045, 4849 Calhoun Rd., 4349 Martin Luther King Blvd., Houston, TX 77204, USA. Tel: +1-832-842-8343. E-mail:
| |
Collapse
|