1
|
Talebi E, Ghoraeian P, Shams Z, Rahimi H. Molecular insights into the hedgehog signaling pathway correlated non-coding RNAs in acute lymphoblastic leukemia, a bioinformatics study. Ann Hematol 2024:10.1007/s00277-024-05763-3. [PMID: 39223285 DOI: 10.1007/s00277-024-05763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a common hematologic cancer with unique incidence and prognosis patterns in people of all ages. Recent molecular biology advances have illuminated ALL's complex molecular pathways, notably the Hedgehog (Hh) signaling system and non-coding RNAs (ncRNAs). This work aimed to unravel the molecular complexities of the link between Hh signaling and ALL by concentrating on long non-coding RNAs (lncRNAs) and their interactions with significant Hh pathway genes. METHODS To analyze differentially expressed lncRNAs and genes in ALL, microarray data from the Gene Expression Omnibus (GEO) was reanalyzed using a systems biology approach. Hh signaling pathway-related genes were identified and their relationship with differentially expressed long non-coding RNAs (DElncRNAs) was analyzed using Pearson's correlation analysis. A regulatory network was built by identifying miRNAs that target Hh signaling pathway-related mRNAs. RESULTS 193 DEGs and 226 DElncRNAs were found between ALL and normal bone marrow samples. Notably, DEGs associated with the Hh signaling pathway were correlated to 26 DElncRNAs. Later studies showed interesting links between DElncRNAs and biological processes and pathways, including drug resistance, immune system control, and carcinogenic characteristics. DEGs associated with the Hh signaling pathway have miRNAs in common with miRNAs already known to be involved in ALL, including miR-155-5p, and miR-211, highlighting the complexity of the regulatory landscape in this disease. CONCLUSION The complex connections between Hh signaling, lncRNAs, and miRNAs in ALL have been unveiled in this study, indicating that DElncRNAs linked to Hh signaling pathway genes could potentially serve as therapeutic targets and diagnostic biomarkers for ALL.
Collapse
Affiliation(s)
- Elham Talebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Sun X, Guan G, Dai Y, Zhao P, Liu L, Wang Q, Li X. microRNA-155-5p initiates childhood acute lymphoblastic leukemia by regulating the IRF4/CDK6/CBL axis. J Transl Med 2022; 102:411-421. [PMID: 34775495 DOI: 10.1038/s41374-021-00638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common malignancy in children. In this study, we aimed to explore putative mechanisms of microRNA-155-5p (miR-155-5p) involvement in childhood ALL (cALL) via interactions with casitas B-lineage lymphoma (CBL), interferon regulatory factor 4 (IRF4), and cyclin-dependent kinase 6 (CDK6). Bioinformatic analysis was performed initially to identify differentially expressed genes in cALL. The expression levels of miR-155-5p, CBL, IRF4, and CDK6 in peripheral blood lymphocytes from clinical ALL samples were determined using RT-qPCR and Western blot assays. A dual-luciferase reporter gene assay was used to ascertain a possible targeting relationship between miR-155-5p and CBL, CCK-8 assay and flow cytometry were used to measure cell activity and apoptosis of ALL cells. Co-IP was performed to investigate the interaction between CBL and IRF4 and the ubiquitination level of IRF4. Furthermore, in vivo validation was performed inducing xenograft tumor models with ALL cells in nude mice. As indicated by bioinformatic analysis, miR-155-5p and CDK6 were upregulated and CBL was downregulated in ALL. miR-155-5p was found to target CBL to inhibit CBL expression. miR-155-5p promoted the proliferation of ALL cells and inhibited their apoptosis by inhibiting the expression of CBL, which otherwise degraded IRF4 protein through ubiquitination, leading to inhibited CDK6 expression. Collectively, the results show that miR-155-5p can promote the development of cALL via the regulation on CBL-mediated IRF4/CDK6 axis.
Collapse
Affiliation(s)
- Xiaojun Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Guotao Guan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yunpeng Dai
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Ping Zhao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Liying Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Qi Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Xiuli Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.
| |
Collapse
|
3
|
Gutierrez-Camino A, Martin-Guerrero I, Dolzan V, Jazbec J, Carbone-Bañeres A, Garcia de Andoin N, Sastre A, Astigarraga I, Navajas A, Garcia-Orad A. Involvement of SNPs in miR-3117 and miR-3689d2 in childhood acute lymphoblastic leukemia risk. Oncotarget 2018; 9:22907-22914. [PMID: 29796161 PMCID: PMC5955428 DOI: 10.18632/oncotarget.25144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Numerous studies have shown that microRNAs (miRNAs) could play a role in this disease. Nowadays, more than 2500 miRNAs have been described, that regulate more than 50% of genes, including those involved in B-cell maturation, differentiation and proliferation. Genetic variants in miRNAs can alter their own levels or function, affecting their target gene expression, and then, may affect ALL risk. Therefore, the aim of this study was to determine the role of miRNA genetic variants in B-ALL susceptibility. We analyzed all variants in pre-miRNAs (MAF > 1%) in two independent cohorts from Spain and Slovenia and inferred their functional effect by in silico analysis. SNPs rs12402181 in miR-3117 and rs62571442 in miR-3689d2 were associated with ALL risk in both cohorts, possibly through their effect on MAPK signalling pathway. These SNPs could be novel markers for ALL susceptibility.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Vita Dolzan
- Institute of Biochemistry, Faculty of Medicine, Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Oncology and Haematology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ana Carbone-Bañeres
- Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain
| | - Nagore Garcia de Andoin
- Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain.,BioDonostia Health Research Institute, San Sebastian, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Itziar Astigarraga
- Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| | | | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
4
|
Effects of CB2 and TRPV1 receptors' stimulation in pediatric acute T-lymphoblastic leukemia. Oncotarget 2018; 9:21244-21258. [PMID: 29765535 PMCID: PMC5940388 DOI: 10.18632/oncotarget.25052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/21/2018] [Indexed: 01/17/2023] Open
Abstract
T-Acute Lymphoblastic Leukemia (T-ALL) is less frequent than B-ALL, but it has poorer outcome. For this reason new therapeutic approaches are needed to treat this malignancy. The Endocannabinoid/Endovanilloid (EC/EV) system has been proposed as possible target to treat several malignancies, including lymphoblastic diseases. The EC/EV system is composed of two G-Protein Coupled Receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel, their endogenous and exogenous ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells, therefore we chose to selectively stimulate CB2 and TRPV1. We treated T-ALL lymphoblasts derived from 4 patients and Jurkat cells with a selective agonist at CB2 receptor: JWH-133 [100 nM] and an agonist at TRPV1 calcium channel: RTX [5 uM] at 6, 12 and 24 hours. We analyzed the effect on apoptosis and Cell Cycle Progression by a cytofluorimetric assays and evaluated the expression level of several target genes (Caspase 3, Bax, Bcl-2, AKT, ERK, PTEN, Notch-1, CDK2, p53) involved in cell survival and apoptosis, by Real-Time PCR and Western Blotting. We observed a pro-apoptotic, anti-proliferative effect of these compounds in both primary lymphoblasts obtained from patients with T-ALL and in Jurkat cell line. Our results show that both CB2 stimulation and TRPV1 activation, can increase the apoptosis in vitro, interfere with cell cycle progression and reduce cell proliferation, indicating that a new therapeutic approach to T-cell ALL might be possible by modulating CB2 and TRPV1 receptors.
Collapse
|
5
|
Petrov I, Suntsova M, Mutorova O, Sorokin M, Garazha A, Ilnitskaya E, Spirin P, Larin S, Zhavoronkov A, Kovalchuk O, Prassolov V, Roumiantsev A, Buzdin A. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells. Aging (Albany NY) 2016; 8:2936-2947. [PMID: 27870639 PMCID: PMC5182073 DOI: 10.18632/aging.101102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022]
Abstract
Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Biomarkers, Tumor
- Bone Marrow
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Gene Expression
- Gene Expression Profiling
- Humans
- Infant
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
Collapse
Affiliation(s)
- Ivan Petrov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Olga Mutorova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Morozov Pediatric Clinical Hospital, Moscow, 101000, Russia
| | - Maxim Sorokin
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russia
| | - Elena Ilnitskaya
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Sergey Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Alex Zhavoronkov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- First Oncology Research and Advisory Center, Moscow, 117997, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia,119991
| | - Alexander Roumiantsev
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Anton Buzdin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- National Research Centre “Kurchatov Institute”, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia
| |
Collapse
|