1
|
Chowdhury NB, Chandran AKN, Walia H, Saha R. Transcriptome enhanced rice grain metabolic model identifies histidine level as a marker for grain chalkiness. Sci Rep 2025; 15:16432. [PMID: 40355482 PMCID: PMC12069599 DOI: 10.1038/s41598-025-00504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Rising temperatures due to global warming can negatively impact rice grain quality and yield. This study investigates the effects of increased warmer night temperatures (WNT), a consequence of global warming, on the quality of rice kernel, particularly grain chalkiness. By integrating computational and experimental approaches, we used a rice grain metabolic network to discover the metabolic factors of chalkiness. For this, we reconstructed the rice grain genome-scale metabolic model (GSM), iOSA3474-G and incorporated transcriptomics data from three different times of the day (dawn, dawn 7 h, and dusk) for both control and WNT conditions with iOSA3474-G. Three distinct growth phases: anoxia, normoxia, and hyperoxia, were identified in rice kernels from the GSMs, highlighting the grain-filling pattern under varying oxygen levels. We predicted excess flux through histidine contributing to the biomass as a marker of normoxia, during which kernel chalkiness occurs. Moreover, similarly, we proposed tyrosine as a marker for the hyperoxic growth phase. We also proposed a potential link between monodehydroascorbate reductase, an enzyme with evolutionary significance dating back to the carboniferous era, in regulating the hyperoxic growth phase. Metabolic bottleneck analysis identified nucleoside diphosphate kinase as a central regulator of metabolic flux under different conditions. These findings provide targeted insights into the complex metabolic network governing rice grain chalkiness under WNT conditions. Integration of GSM and transcriptomics data, enhanced our understanding of the intricate relationship between environmental factors, metabolic processes, and grain quality and also offer markers that can be useful to develop rice with improved resilience.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 1600 Vine Street, Lincoln, NE, 68505, USA
| | - Anil Kumar Nalini Chandran
- Department of Agronomy and Horticulture, University of Nebraska- Lincoln, 1600 Vine Street, Lincoln, NE, 68505, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska- Lincoln, 1600 Vine Street, Lincoln, NE, 68505, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 1600 Vine Street, Lincoln, NE, 68505, USA.
| |
Collapse
|
2
|
Mane RS, Prasad BD, Sahni S, Quaiyum Z, Sharma VK. Biotechnological studies towards improvement of finger millet using multi-omics approaches. Funct Integr Genomics 2024; 24:148. [PMID: 39218842 DOI: 10.1007/s10142-024-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.
Collapse
Affiliation(s)
- Rushikesh Sanjay Mane
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Bishun Deo Prasad
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | - Sangita Sahni
- Department of Plant Pathology, TCA Dholi, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Zeba Quaiyum
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - V K Sharma
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
3
|
Basu S, Kumar G. Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants. PLANT CELL REPORTS 2024; 43:193. [PMID: 39008125 DOI: 10.1007/s00299-024-03275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
4
|
Patan SSVK, Vallepu S, Shaik KB, Shaik N, Adi Reddy NRY, Terry RG, Sergeant K, Hausman JF. Drought resistance strategies in minor millets: a review. PLANTA 2024; 260:29. [PMID: 38879859 DOI: 10.1007/s00425-024-04427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.
Collapse
Affiliation(s)
| | - Suneetha Vallepu
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Khader Basha Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Naseem Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | | | | | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| | - Jean François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Wang S, Yang S, Jakada BH, Qin H, Zhan Y, Lan X. Transcriptomics reveal the involvement of reactive oxygen species production and sequestration during stigma development and pollination in Fraxinus mandshurica. FORESTRY RESEARCH 2024; 4:e014. [PMID: 39524420 PMCID: PMC11524289 DOI: 10.48130/forres-0024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 11/16/2024]
Abstract
Stigma development and successful pollination are essential for the continuous existence of flowering plants. However, the specific mechanisms regulating these important processes are not well understood. In this study, we investigated the development of the stigma in Fraxinus mandshurica, dividing it into three stages: S1, S2, and S3. Transcriptome data were used to analyze the gene expression patterns across these developmental stages, and 6,402 genes were observed to exhibit variable expression levels. Our analysis revealed a significant enrichment of pathways related to reactive oxygen species (ROS) and flavonoids, as indicated by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes. Further examination by cluster analysis and quantitative polymerase chain reaction revealed that 58 genes were associated with ROS synthesis and seven genes were linked to flavonoid synthesis during the S2 and S3 stages. ROS accumulated during stigma development, which decreased rapidly upon pollen germination and pollen tube elongation, as confirmed by H2DCFDA staining. Moreover, ROS levels in mature stigmas were reduced by treatment with ROS scavengers, such as copper (II) chloride, sodium salicylate, and diphenyleneiodonium, an inhibitor of NADPH oxidases, which enhanced pollen adhesion and germination. These findings suggest that the balance between ROS production and sequestration plays a critical role in regulating stigma development and pollen germination in Fraxinus mandshurica.
Collapse
Affiliation(s)
- Shuqi Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shun Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hongtao Qin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Madhu, Sharma A, Kaur A, Singh K, Upadhyay SK. Modulation in gene expression and enzyme activity suggested the roles of monodehydroascorbate reductase in development and stress response in bread wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111902. [PMID: 37879539 DOI: 10.1016/j.plantsci.2023.111902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Monodehydroascorbate reductase (MDHAR) is a crucial enzymatic antioxidant of the ascorbate-glutathione pathway involved in reactive oxygen species scavenging. Herein, we identified 15 TaMDHAR genes in bread wheat. Phylogenetic analysis revealed their clustering into three groups, which are also related to the subcellular localization in the peroxisome matrix, peroxisome membrane, and chloroplast. Each TaMDHAR protein consisted of two conserved domains; Pyr_redox and Pyr_redox_2 of the pyridine nucleotide disulfide oxidoreductase family. The occurrence of diverse groups of cis-regulatory elements in the promoter region and their interaction with numerous transcription factors suggest assorted functions of TaMDHARs in growth and development and in light, phytohormones, and stress responses. Expression analysis in various tissues further revealed their importance in vegetative and reproductive development. In addition, the differential gene expression and enhanced enzyme activity during drought, heat, and salt treatments exposed their role in abiotic stress response. Interaction of MDHARs with various antioxidant enzymes and biochemicals related to the ascorbate-glutathione cycle exposed their synchronized functioning. Interaction with auxin indicated the probability of cross-talk between antioxidants and auxin signaling. The miR168a, miR169, miR172 and others interaction with various TaMDHARs further directed their association with developmental processes and stress responses. The current study provides extensive information about the importance of TaMDHARs, moreover, the precise role of each gene needs to be established in future studies.
Collapse
Affiliation(s)
- Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
7
|
Winichayakul S, Macknight R, Le Lievre L, Beechey-Gradwell Z, Lee R, Cooney L, Xue H, Crowther T, Anderson P, Richardson K, Zou X, Maher D, Bryan G, Roberts N. Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances. PLoS One 2022; 17:e0275503. [PMID: 36227922 PMCID: PMC9560171 DOI: 10.1371/journal.pone.0275503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Under favourable conditions, perennial ryegrass (Lolium perenne) engineered to accumulated high lipid (HL) carbon sink in their leaves was previously shown to also enhance photosynthesis and growth. The greater aboveground biomass was found to be diminished in a dense canopy compared to spaced pots. Besides, the underlying genetic regulatory network linking between leaf lipid sinks and these physiological changes remains unknown. In this study, we demonstrated that the growth advantage was not displayed in HL Lolium grown in spaced pots under low lights. Under standard lights, analysis of differentiating transcripts in HL Lolium reveals that the plants had elevated transcripts involved in lipid metabolism, light capturing, photosynthesis, and sugar signalling while reduced expression of genes participating in sugar biosynthesis and transportation. The plants also had altered several transcripts involved in mitochondrial oxidative respiration and redox potential. Many of the above upregulated or downregulated transcript levels were found to be complemented by growing the plants under low light. Overall, this study emphasizes the importance of carbon and energy homeostatic regulatory mechanisms to overall productivity of the HL Lolium through photosynthesis, most of which are significantly impacted by low irradiances.
Collapse
Affiliation(s)
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Liam Le Lievre
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Luke Cooney
- AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | | | - Xiuying Zou
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | - Nick Roberts
- AgResearch Ltd., Palmerston North, New Zealand
- * E-mail: (SW); (NR)
| |
Collapse
|
8
|
Thomas S, Kumar R, Sharma K, Barpanda A, Sreelakshmi Y, Sharma R, Srivastava S. iTRAQ-based proteome profiling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling. Sci Rep 2021; 11:7540. [PMID: 33824368 PMCID: PMC8024257 DOI: 10.1038/s41598-021-87208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
In plants, during growth and development, photoreceptors monitor fluctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR-light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de-etiolate in continuous FR. Here we used iTRAQ-based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR-mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identified a decreased abundance of enzymes involved in photosynthesis and carbon fixation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profile associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant.
Collapse
Affiliation(s)
- Sherinmol Thomas
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Rakesh Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Deptartment of Life Science, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka, 585367, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Abhilash Barpanda
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
9
|
Kim IS, Choi W, Son J, Lee JH, Lee H, Lee J, Shin SC, Kim HW. Screening and Genetic Network Analysis of Genes Involved in Freezing and Thawing Resistance in DaMDHAR-Expressing Saccharomyces cerevisiae Using Gene Expression Profiling. Genes (Basel) 2021; 12:genes12020219. [PMID: 33546197 PMCID: PMC7913288 DOI: 10.3390/genes12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023] Open
Abstract
The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Woong Choi
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Jonghyeon Son
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Jun Hyuck Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Hyoungseok Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Jungeun Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Seung Chul Shin
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Han-Woo Kim
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
- Correspondence:
| |
Collapse
|
10
|
Mude LN, Mondam M, Gujjula V, Jinka S, Pinjari OB, Yellodu Adi Reddy N, Patan SSVK. Morpho-physiological and biochemical changes in finger millet [ Eleusine coracana (L.) Gaertn.] under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2151-2171. [PMID: 33268920 PMCID: PMC7688855 DOI: 10.1007/s12298-020-00909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Finger millet (Eleusine coracana L. Gaertn.) is a nutritious and climate-resilient crop with a C4 type carbon fixation pathway. The present study was aimed to assess the drought tolerance capacities of four finger millet genotypes based on their physiological and biochemical characteristics at three different phenological stages. Finger millet genotypes RAU 8, GPU 67, GPU 28 and MS 9272 were subjected to two water regimes, regular irrigation (control) and suspended irrigation (drought stress). During water regimes, morpho-physiological [biomass accumulation, leaf relative water content, and photosynthetic pigments] and biochemical changes [proline content, water soluble carbohydrates, antioxidant enzymes, and malondialdehyde content] were studied during seedling (18th day), vegetative (49th day) and early flowering stages (73rd day). The maintenance of growth especially root growth, biomass accumulation, the differential response in the concentration and changes of pigments, accumulation of proline, water-soluble carbohydrates and increased levels of antioxidant enzymes under drought stress play a major role in differential tolerance in finger millet genotypes that is conferred by the biplot analysis. The genotype RAU 8 is the most drought-tolerant genotype at all the three different phenological stages. Whereas the genotype GPU 67 was identified as sensitive at the seedling stage and its tolerance level was improved at vegetative and early flowering stages. The genotypes GPU 28 and MS 9272 were considered as drought sensitive at all three different phenological stages. Our results provide inputs to the breeders to select genotypes as parents and to design effective strategies in crop improvement programs.
Collapse
Affiliation(s)
| | - Muniraja Mondam
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh 516005 India
| | | | - Sivakumar Jinka
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516005 India
| | - Osman Basha Pinjari
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516005 India
| | - Nanja Yellodu Adi Reddy
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065 India
| | | |
Collapse
|
11
|
Shokat S, Großkinsky DK, Roitsch T, Liu F. Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC PLANT BIOLOGY 2020; 20:400. [PMID: 32867688 PMCID: PMC7457523 DOI: 10.1186/s12870-020-02581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND To improve our understanding about the physiological mechanism of grain yield reduction at anthesis, three spring wheat genotypes [L1 (advanced line), L2 (Vorobey) and L3 (Punjab-11)] having contrasting yield potential under drought in field were investigated under controlled greenhouse conditions, drought stress was imposed at anthesis stage by withholding irrigation until all plant available water was depleted, while well-watered control plants were kept at 95% pot water holding capacity. RESULTS Compared to genotype L1 and L2, pronounced decrease in grain number (NGS), grain yield (GY) and harvest index (HI) were found in genotype L3, mainly due to its greater kernel abortion (KA) under drought. A significant positive correlation of leaf monodehydroascorbate reductase (MDHAR) with both NGS and HI was observed. In contrast, significant negative correlations of glutathione S-transferase (GST) and vacuolar invertase (vacInv) both within source and sink were found with NGS and HI. Likewise, a significant negative correlation of leaf abscisic acid (ABA) with NGS was noticed. Moreover, leaf aldolase and cell wall peroxidase (cwPOX) activities were significantly and positively associated with thousand kernel weight (TKW). CONCLUSION Distinct physiological markers correlating with yield traits and higher activity of leaf aldolase and cwPOX may be chosen as predictive biomarkers for higher TKW. Also, higher activity of MDHAR within the leaf can be selected as a predictive biomarker for higher NGS in wheat under drought. Whereas, lower activity of vacInv and GST both within leaf and spike can be selected as biomarkers for higher NGS and HI. The results highlighted the role of antioxidant and carbohydrate-metabolic enzymes in the modulation of source-sink balance in wheat crops, which could be used as bio-signatures for breeding and selection of drought-resilient wheat genotypes for a future drier climate.
Collapse
Affiliation(s)
- Sajid Shokat
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark.
- Wheat Breeding Group, Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan.
| | - Dominik K Großkinsky
- Transport Biology, Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Thomas Roitsch
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| | - Fulai Liu
- Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630, Taastrup, Denmark
| |
Collapse
|
12
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
13
|
Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L.) Gaertn.) genotypes to PEG-induced osmotic stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME. Effects of Simulated Space Radiations on the Tomato Root Proteome. FRONTIERS IN PLANT SCIENCE 2019; 10:1334. [PMID: 31708949 PMCID: PMC6821793 DOI: 10.3389/fpls.2019.01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 05/27/2023]
Abstract
Plant cultivation on spacecraft or planetary outposts is a promising and actual perspective both for food and bioactive molecules production. To this aim, plant response to ionizing radiations, as an important component of space radiation, must be assessed through on-ground experiments due to the potentially fatal effects on living systems. Hereby, we investigated the effects of X-rays and γ-rays exposure on tomato "hairy root" cultures (HRCs), which represent a solid platform for the production of pharmaceutically relevant molecules, including metabolites and recombinant proteins. In a space application perspective, we used an HRC system previously fortified through the accumulation of anthocyanins, which are known for their anti-oxidant properties. Roots were independently exposed to different photon radiations, namely X-rays (250 kV) and γ-rays (Co60, 1.25 MeV), both at the absorbed dose levels of 0.5, 5, and 10 Gy. Molecular changes induced in the proteome of HRCs were investigated by a comparative approach based on two-dimensional difference in-gel electrophoresis (2D-DIGE) technology, which allowed to highlight dynamic processes activated by these environmental stresses. Results revealed a comparable response to both photon treatments. In particular, the presence of differentially represented proteins were observed only when roots were exposed to 5 or 10 Gy of X-rays or γ-rays, while no variations were appreciated at 0.5 Gy of both radiations, when compared with unexposed control. Differentially represented proteins were identified by mass spectrometry procedures and their functional interactions were analyzed, revealing variations in the activation of stress response integrated mechanisms as well as in carbon/energy and protein metabolism. Specific results from above-mentioned procedures were validated by immunoblotting. Finally, a morphometric analysis verified the absence of significant alterations in the development of HRCs, allowing to ascribe the observed variations of protein expression to processes of acclimation to ionizing radiations. Overall results contribute to a meaningful risk evaluation for biological systems exposed to extra-terrestrial environments, in the perspective of manned interplanetary missions planned for the near future.
Collapse
Affiliation(s)
- Angiola Desiderio
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Silvia Massa
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Pimpinella
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Vanessa De Coste
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Claudio Pioli
- Division Health Protection Technologies, ENEA, Rome, Italy
| | - Luca Nardi
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
15
|
Yeh HL, Lin TH, Chen CC, Cheng TX, Chang HY, Lee TM. Monodehydroascorbate Reductase Plays a Role in the Tolerance of Chlamydomonas reinhardtii to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2019; 60:2167-2179. [PMID: 31198969 DOI: 10.1093/pcp/pcz110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/21/2019] [Indexed: 05/26/2023]
Abstract
Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is one of the key enzymes in the conversion of oxidized ascorbate (AsA) back to reduced AsA in plants. This study investigated the role of MDAR in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to photooxidative stress by overexpression and downregulation of the CrMDAR1 gene. For overexpression of CrMDAR1 driven by a HSP70A:RBCS2 fusion promoter, the cells survived under very high-intensity light stress (VHL, 1,800 μmol�m-2�s-1), while the survival of CC-400 and vector only control (vector without insert) cells decreased for 1.5 h under VHL stress. VHL increased lipid peroxidation of CC-400 but did not alter lipid peroxidation in CrMDAR1 overexpression lines. Additionally, overexpression of CrMDAR1 showed an increase in viability, CrMDAR1 transcript abundance, enzyme activity and the AsA: dehydroascorbate (DHA) ratio. Next, MDAR was downregulated to examine the essential role of MDAR under high light condition (HL, 1,400 μmol�m-2�s-1). The CrMDAR1 knockdown amiRNA line exhibited a low MDAR transcript abundance and enzyme activity and the survival decreased under HL conditions. Additionally, HL illumination decreased CrMDAR1 transcript abundance, enzyme activity and AsA:DHA ratio of CrMDAR1-downregulation amiRNA lines. Methyl viologen (an O2�- generator), H2O2 and NaCl treatment could induce an increase in CrMDAR1 transcript level. It represents reactive oxygen species are one of the factor inducing CrMDAR1 gene expression. In conclusion, MDAR plays a role in the tolerance of Chlamydomonas cells to photooxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Yeh
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsen-Hung Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Xing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Vanacker H, Guichard M, Bohrer AS, Issakidis-Bourguet E. Redox Regulation of Monodehydroascorbate Reductase by Thioredoxin y in Plastids Revealed in the Context of Water Stress. Antioxidants (Basel) 2018; 7:E183. [PMID: 30563207 PMCID: PMC6316508 DOI: 10.3390/antiox7120183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Thioredoxins (TRXs) are key players within the complex response network of plants to environmental constraints. Here, the physiological implication of the plastidial y-type TRXs in Arabidopsis drought tolerance was examined. We previously showed that TRXs y1 and y2 have antioxidant functions, and here, the corresponding single and double mutant plants were studied in the context of water deprivation. TRX y mutant plants showed reduced stress tolerance in comparison with wild-type (WT) plants that correlated with an increase in their global protein oxidation levels. Furthermore, at the level of the main antioxidant metabolites, while glutathione pool size and redox state were similarly affected by drought stress in WT and trxy1y2 plants, ascorbate (AsA) became more quickly and strongly oxidized in mutant leaves. Monodehydroascorbate (MDA) is the primary product of AsA oxidation and NAD(P)H-MDA reductase (MDHAR) ensures its reduction. We found that the extractable leaf NADPH-dependent MDHAR activity was strongly activated by TRX y2. Moreover, activity of recombinant plastid Arabidopsis MDHAR isoform (MDHAR6) was specifically increased by reduced TRX y, and not by other plastidial TRXs. Overall, these results reveal a new function for y-type TRXs and highlight their role as major antioxidants in plastids and their importance in plant stress tolerance.
Collapse
Affiliation(s)
- Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Marjorie Guichard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Anne-Sophie Bohrer
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Emmanuelle Issakidis-Bourguet
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| |
Collapse
|
17
|
Molecular cloning, in-silico characterization and functional validation of monodehydroascorbate reductase gene in Eleusine coracana. PLoS One 2017; 12:e0187793. [PMID: 29176870 PMCID: PMC5703496 DOI: 10.1371/journal.pone.0187793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/25/2017] [Indexed: 01/19/2023] Open
Abstract
Ascorbic acid is a ubiquitous water soluble antioxidant that plays a critical role in plant growth and environmental stress tolerance. It acts as a free radical scavenger as well as a source of reducing power for several cellular processes. Because of its pivotal role in regulating plant growth under optimal as well as sub-optimal conditions, it becomes obligatory for plants to maintain a pool of reduced ascorbic acid. Several cellular processes help in maintaining the reduced ascorbic acid pool, by regulating its synthesis and regeneration processes. Current study demonstrates that monodehydroascorbate reductase is an important enzyme responsible for maintaining the reduced ascorbate pool, by optimizing the recycling of oxidized ascorbate. Cloning and functional characterization of this important stress inducible gene is of great significance for its imperative use in plant stress management. Therefore, we have cloned and functionally validated the role of monodehydroascorbate reductase gene (mdar) from a drought tolerant variety of Eleusine coracana. The cloned Ecmdar gene comprises of 1437bp CDS, encoding a 478 amino acid long polypeptide. The active site analysis showed presence of conserved Tyr348 residue, facilitating the catalytic activity in electron transfer mechanism. qPCR expression profiling of Ecmdar under stress indicated that it is an early responsive gene. The analysis of Ecmdar overexpressing Arabidopsis transgenic lines suggests that monodehydroascorbate reductase acts as a key stress regulator by modulating the activity of antioxidant enzymes to strengthen the ROS scavenging ability and maintains ROS homeostasis. Thus, it is evident that Ecmdar is an important gene for cellular homeostasis and its over-expression could be successfully used to strengthen stress tolerance in crop plants.
Collapse
|
18
|
Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S, Kumar J, Kumar A. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. FRONTIERS IN PLANT SCIENCE 2017; 8:643. [PMID: 28487720 PMCID: PMC5404511 DOI: 10.3389/fpls.2017.00643] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.
Collapse
Affiliation(s)
- Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research, Defence Research and Development OrganisationHaldwani, India
| | - Sandeep Arora
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Neelofar Mirza
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Anjali Pande
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Charu Lata
- Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| | - Swati Puranik
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - J. Kumar
- Department of Plant Pathology, College of Agriculture, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- *Correspondence: Anil Kumar,
| |
Collapse
|