1
|
Wan NF, Fu L, Dainese M, Kiær LP, Hu YQ, Xin F, Goulson D, Woodcock BA, Vanbergen AJ, Spurgeon DJ, Shen S, Scherber C. Pesticides have negative effects on non-target organisms. Nat Commun 2025; 16:1360. [PMID: 39948065 PMCID: PMC11825942 DOI: 10.1038/s41467-025-56732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Pesticides affect a diverse range of non-target species and may be linked to global biodiversity loss. The magnitude of this hazard remains only partially understood. We present a synthesis of pesticide (insecticide, herbicide and fungicide) impacts on multiple non-target organisms across trophic levels based on 20,212 effect sizes from 1,705 studies. For non-target plants, animals (invertebrate and vertebrates) and microorganisms (bacteria and fungi), we show negative responses of the growth, reproduction, behaviour and other physiological biomarkers within terrestrial and aquatic systems. Pesticides formulated for specific taxa negatively affected non-target groups, e.g. insecticidal neonicotinoids affecting amphibians. Negative effects were more pronounced in temperate than tropical regions but were consistent between aquatic and terrestrial environments, even after correcting for field-realistic terrestrial and environmentally relevant exposure scenarios. Our results question the sustainability of current pesticide use and support the need for enhanced risk assessments to reduce risks to biodiversity and ecosystems.
Collapse
Affiliation(s)
- Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Liwan Fu
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Matteo Dainese
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Lars Pødenphant Kiær
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fengfei Xin
- Wetland Research Department, Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, China
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Siyuan Shen
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
- Institute of Organismic Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Lari E, Elahi Z, Wong J, Bluhm K, Brinkmann M, Goss G. Impacts of UV light on the effects of either conventional or nano-enabled azoxystrobin on Daphnia magna. CHEMOSPHERE 2024; 364:142965. [PMID: 39069098 DOI: 10.1016/j.chemosphere.2024.142965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Agri-chemicals such as fungicides are applied in natural settings and hence are exposed to the environment's ultraviolet (UV) light. Recently, many fungicides in commerce are being modified as nano-enabled formulations to increase agricultural productivity and reduce potential off-target effects. The present study investigated the impacts of sunlight-grade UV emission on the effects of either conventional or nano-enabled azoxystrobin (Az or nAz, respectively), a commonly applied agricultural fungicide, on Daphnia magna. Daphnids were exposed to increasing concentrations of Az or nAz under either full-spectrum (Vis) or full-spectrum Vis + UV (Vis + UV) lighting regimes to evaluate LC50s. Az LC50 was calculated at 268.8 and 234.2 μg/L in Vis or Vis + UV, respectively, while LC50 for nAz was 485.6 and 431.0 μg/L under Vis or Vis + UV light, respectively. Daphnids were exposed to 10% LC50 of either Az or nAz under Vis or Vis + UV lighting regime for 48 h or 21 d (acute and chronic, respectively). By 48 h, both Az and nAz reduced O2 consumption and increased TBARS. Heart rate was increased in Az-exposed daphnids but not in nAz groups. Neither of the two chemicals impacted thoracic limb activity. In 21 d exposures, Az significantly reduced biomass production and fecundity, but nAz groups were not significantly different from controls. The results of the present study demonstrate that conventional Az is more toxic to D. magna at lethal and sub-lethal levels in acute and chronic exposures, and sunlight strength UV can potentiate both acute and chronic effects of Az and nAz on D. magna.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zahra Elahi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonas Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security (GIWS), University of Saskatchewan, Saskatoon, Canada
| | - Greg Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Campani T, Casini S, Maccantelli A, Tosoni F, D'Agostino A, Caliani I. Oxidative stress and DNA alteration on the earthworm Eisenia fetida exposed to four commercial pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35969-35978. [PMID: 38743332 PMCID: PMC11136830 DOI: 10.1007/s11356-024-33511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.
Collapse
Affiliation(s)
- Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Andrea Maccantelli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Filippo Tosoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco, 7, 53100, Siena, Italia
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
4
|
Pyatina SA, Shishatskaya EI, Dorokhin AS, Menzyanova NG. Border cell population size and oxidative stress in the root apex of Triticum aestivum seedlings exposed to fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25600-25615. [PMID: 38478309 DOI: 10.1007/s11356-024-32840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Fungicides reduce the risk of mycopathologies and reduce the content of mycotoxins in commercial grain. The effect of fungicides on the structural and functional status of the root system of grain crops has not been studied enough. In this regard, we studied the phytocytotoxic effects tebuconazole (TEB) and epoxiconazole (EPO) and azoxystrobin (AZO) in the roots of Triticum aestivum seedlings in hydroponic culture. In the presence of EPO and AZO (but not TEB) inhibition of the root growth was accompanied by a dose-dependent increase in the content of malondialdehyde, carbonylated proteins, and proline in roots. TEB was characterized by a dose-dependent decrease in the total amount of border cells (BCs) and the protein content in root extracellular trap (RET). For EPO and AZO, the dose curves of changes in the total number of BCs were bell-shaped. AZO did not affect the protein content in RET. The protein content in RET significantly decreased by 3 times for an EPO concentration of 1 µg/mL. The obtained results reveal that the BC-RET system is one of the functional targets of fungicides in the root system of wheat seedlings. Studied fungicides induce oxidative stress and structural and functional alterations in the BC-RET system that can affect their toxicity to the root system of crops.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi Av, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | | | | |
Collapse
|
5
|
Azoxystrobin Impairs Neuronal Migration and Induces ROS Dependent Apoptosis in Cortical Neurons. Int J Mol Sci 2021; 22:ijms222212495. [PMID: 34830376 PMCID: PMC8622671 DOI: 10.3390/ijms222212495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Fungicides often cause genotoxic stress and neurodevelopmental disorders such as autism (ASD). Fungicide-azoxystrobin (AZOX) showed acute and chronic toxicity to various organisms, and remained a concern for ill effects in developing neurons. We evaluated the neurotoxicity of AZOX in developing mouse brains, and observed prenatal exposure to AZOX reduced neuronal viability, neurite outgrowth, and cortical migration process in developing brains. The 50% inhibitory concentration (IC50) of AZOX for acute (24 h) and chronic (7 days) exposures were 30 and 10 μM, respectively. Loss in viability was due to the accumulation of reactive oxygen species (ROS), and inhibited neurite outgrowth was due to the deactivation of mTORC1 kinase activity. Pretreatment with ROS scavenger- N-acetylcysteine (NAC) reserved the viability loss and forced activation of mTORC1 kinase revived the neurite outgrowth in AZOX treated neurons. Intra-amniotic injection of AZOX coupled with in utero electroporation of GFP-labelled plasmid in E15.5 mouse was performed and 20 mg/kg AZOX inhibited radial neuronal migration. Moreover, the accumulation of mitochondria was significantly reduced in AZOX treated primary neurons, indicative of mitochondrial deactivation and induction of apoptosis, which was quantified by Bcl2/Bax ratio and caspase 3 cleavage assay. This study elucidated the neurotoxicity of AZOX and explained the possible cure from it.
Collapse
|