1
|
Quan Y, Liu H, Li K, Xu L, Zhao Z, Xiao L, Yao Y, Du D. Genome-wide association study reveals genetic loci for seed density per silique in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:80. [PMID: 40113624 DOI: 10.1007/s00122-025-04857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
KEY MESSAGE Two stable QTLs controlling seed density per silique were detected on chromosomes A09 and C05 in rapeseed via GWAS, and ARF18 was the only causal gene of QTL qSDPS-A09. Seed density per silique (SDPS) is a key agronomic trait that directly or indirectly affects seed yield in rapeseed (Brassica napus L.). Exploring the genetic control of SDPS is beneficial for increasing rapeseed production. In this study, we evaluated the SDPS phenotypes of 413 rapeseed cultivars (lines) across five natural environments and genotyped them by resequencing. A GWAS analysis was performed using 5,277,554 high-quality variants with the MLM_PCA + K and FarmCPU models. A total of 51 loci were identified to be significantly (p < - log10(1.88 × 10-6)) associated with SDPS, of which 5 were detected in all environments (except for SNP-2095656) by both GWAS models. Among the five loci, three were located on chromosome A09, whereas the other two loci were located on chromosome C05. The three loci on chromosome A09 and the two loci on chromosome C05 were physically close to each other. Therefore, only the two common candidate QTLs were integrated and named QTL qSDPS-A09 (320 kb) and qSDPS-C05 (331.48 kb), respectively. Sixty-seven and forty-eight candidate genes were initially identified on A09 and C05 and then narrowed down to 17 and 13 candidate genes, respectively, via LD block analyses. Gene-based association studies, haplotype analyses and expression analyses confirmed that three homologs of Arabidopsis auxin-response factor 18 (BnaA09G0559300ZS) was the most likely candidate genes underlying the QTL qSDPS-A09. ARF18Hap4 was identified as a favorable haplotype for high SDPS. These findings will aid in elucidating the genetic and molecular mechanisms of SDPS and promoting genetic modifications in rapeseed breeding.
Collapse
Affiliation(s)
- Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhigang Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Lu Xiao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
2
|
Verrico B, Preston JC. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. THE NEW PHYTOLOGIST 2025; 245:1864-1878. [PMID: 39722593 PMCID: PMC11798905 DOI: 10.1111/nph.20375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.
Collapse
Affiliation(s)
- Brittany Verrico
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| | - Jill C. Preston
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| |
Collapse
|
3
|
Han X, Zhao L, Yu J, Wang X, Zhang S, Li L, Liu C. Identifcation and fine mapping of qHSW1, a major QTL for hundred-seed weight in mungbean. FRONTIERS IN PLANT SCIENCE 2025; 15:1510487. [PMID: 39925368 PMCID: PMC11802520 DOI: 10.3389/fpls.2024.1510487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025]
Abstract
Mung bean, an important economic crop, is considered a crop with relatively high levels of plant protein constituents and is consumed as both a vegetable and a grain. Among various yield-related traits, hundred-seed weight (HSW) is crucial in determining mung bean production. This study employed a recombinant inbred line (RIL) population of 200 lines that were genotyped via whole-genome resequencing to exploit genetic potential in the identification of HSW-associated quantitative trait loci (QTLs) across four environments. We identified 5 QTLs for HSW, each explaining 2.46-26.15% of the phenotypic variance. Among these, qHSW1 was mapped on chromosome 1 in all four environments, explaining 16.65-26.15% of the phenotypic variation. Fine mapping and map-based cloning procedures, along with progeny testing of recombinants, aided in narrowing the candidate interval for qHSW1 to 506 kb. This identification of the qHSW1 genomic interval and closely linked markers to qHSW1 could prove valuable in breeding efforts for improved mung bean cultivars with higher seed weight.
Collapse
Affiliation(s)
- Xuesong Han
- Hubei Key Laboratory of Food Crop Germplasm and Genetic, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Long Zhao
- Institute of Specialty Crops, Bijie Academy of Agricultural Sciences, Bijie, China
| | - Juan Yu
- Institute of Specialty Crops, Bijie Academy of Agricultural Sciences, Bijie, China
| | - Xingmin Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shilong Zhang
- Institute of Specialty Crops, Bijie Academy of Agricultural Sciences, Bijie, China
| | - Li Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Changyan Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
4
|
Chen J, Wen Y, Pan Y, He Y, Gong X, Yang W, Chen W, Zhou F, Jiang D. Analysis of the role of the rice metallothionein gene OsMT2b in grain size regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112272. [PMID: 39321878 DOI: 10.1016/j.plantsci.2024.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Seed size is one of the three main characteristics determining rice yield. Clarification of the mechanisms regulating seed size in rice has implications for improving rice yield. Although several genes have been reported to regulate seed size, most of the reports are fragmentary. The role of metallothioneins (MTs) in regulating seed size remains unknown. Here, we found that OsMT2b was expressed in both spikelets and developing seeds. OsMT2b-overexpression lines had large and heavy seeds, and RNAi (RNA interference) lines had small and light seeds. Scanning electron microscopy (SEM) observations revealed that OsMT2b regulated spikelet hull size by affecting cell expansion in the outer epidermis. Histological analysis indicated that OsMT2b affected the number of cells in the cross-section of spikelet hulls, which affected seed size. The fresh weight of seeds was consistently higher in OsMT2b-overexpression lines than in seeds of the wild-type (WT) and RNAi lines from 6 DAP (days after pollination) until maturity, indicating that OsMT2b affected seed filling. Reverse transcription-quantitative PCR (RT-qPCR) analyses revealed that OsMT2b regulates the expression of reactive oxygen species scavenging-related genes involved in seed size regulation. In conclusion, our results indicated that OsMT2b positively regulates seed size, which provides a novel approach for regulating seed size with genetic engineering technology.
Collapse
Affiliation(s)
- Jian Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Pan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoting Gong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenli Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Park JR, Seo J, Lee CM, Jeong OY, Jin M, Park S, Park HS. SNP-based QTL mapping and identification of panicle structure-related genes in rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14588. [PMID: 39440705 DOI: 10.1111/ppl.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Rice is a staple crop providing a significant portion of the global food supply. It is then crucial to develop strategies for breeding high-yield cultivars to meet global food security challenges, including the UN's zero-hunger goal. In this study, QTL mapping was employed to pinpoint key genomic regions linked to traits influencing rice yield, with a focus on panicle structure-a critical determinant of grain number. Over two consecutive years, QTLs were identified using 88 JJ625LG/Namchan Recombinant Inbred Lines (JNRILs), revealing several candidate genes. Notably, Gn1a, a known regulator of grain number, was mapped within qNS1 and qNSSr1-1, while the sd1 gene, linked to plant height, was detected across multiple QTLs. Furthermore, a novel gene, OsNSMq3 (Os03g0843800), encoding a methyltransferase, was identified in various QTLs, with haplotype and sequence homology analysis suggesting its role in enhancing yield by influencing panicle structure development. The increase in primary and secondary branches, driven by these genes, leads to a higher number of spikelets per panicle, thereby boosting yield. These findings underscore the potential of candidate genes from stable QTLs as valuable tools in molecular breeding to develop high-yield rice cultivars, addressing global hunger and aiding food supply in refugee crises.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Jeonghwan Seo
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Mina Jin
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Songhee Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
6
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
7
|
Tian Y, Chen X, Xu P, Wang Y, Wu X, Wu K, Fu X, Chin Y, Liao Y. Rapid Visual Detection of Elite Erect Panicle Dense and Erect Panicle 1 Allele for Marker-Assisted Improvement in Rice ( Oryza sativa L.) Using the Loop-Mediated Isothermal Amplification Method. Curr Issues Mol Biol 2024; 46:498-512. [PMID: 38248334 PMCID: PMC10814556 DOI: 10.3390/cimb46010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Molecular-assisted breeding is an effective way to improve targeted agronomic traits. dep1 (dense and erect panicle 1) is a pleiotropic gene that regulates yield, quality, disease resistance, and stress tolerance, traits that are of great value in rice (Oryza sativa L.) breeding. In this study, a colorimetric LAMP (loop-mediated isothermal amplification) assay was developed for the detection of the dep1 allele and tested for the screening and selection of the heavy-panicle hybrid rice elite restorer line SHUHUI498, modified with the allele. InDel (Insertion and Deletion) primers (DEP1_F and DEP1_R) and LAMP primers (F3, B3, FIP, and BIP) for genotyping were designed using the Primer3 Plus (version 3.3.0) and PrimerExplore (version 5) software. Our results showed that both InDel and LAMP markers could be used for accurate genotyping. After incubation at a constant temperature of 65 °C for 60 min with hydroxynaphthol blue (HNB) as a color indicator, the color of the LAMP assay containing the dep1 allele changed to sky blue. The SHUHUI498 rice line that was detected in our LAMP assay displayed phenotypes consistent with the dep1 allele such as having a more compact plant architecture, straight stems and leaves, and a significant increase in the number of effective panicles and spikelets, demonstrating the effectiveness of our method in screening for the dep1 allele in rice breeding.
Collapse
Affiliation(s)
- Yonghang Tian
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Xiyi Chen
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| | - Kun Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China; (K.W.); (X.F.)
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China; (K.W.); (X.F.)
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya 572022, China; (Y.T.); (X.C.)
- Marine Food Engineering Technology Research Center of Hainan Province, No. 1 Yucai Road, Sanya 572022, China
| | - Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Chengdu 611130, China; (P.X.); (Y.W.); (X.W.)
| |
Collapse
|
8
|
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1215371. [PMID: 37534289 PMCID: PMC10391551 DOI: 10.3389/fpls.2023.1215371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Rice (Oryza Sativa L.) is an essential constituent of the global food chain. Drought stress significantly diminished its productivity and threatened global food security. This review concisely discussed how drought stress negatively influenced the rice's optimal growth cycle and altered its morpho-physiological, biochemical, and molecular responses. To withstand adverse drought conditions, plants activate their inherent drought resistance mechanism (escape, avoidance, tolerance, and recovery). Drought acclimation response is characterized by many notable responses, including redox homeostasis, osmotic modifications, balanced water relations, and restored metabolic activity. Drought tolerance is a complicated phenomenon, and conventional breeding strategies have only shown limited success. The application of molecular markers is a pragmatic technique to accelerate the ongoing breeding process, known as marker-assisted breeding. This review study compiled information about quantitative trait loci (QTLs) and genes associated with agronomic yield-related traits (grain size, grain yield, harvest index, etc.) under drought stress. It emphasized the significance of modern breeding techniques and marker-assisted selection (MAS) tools for introgressing the known QTLs/genes into elite rice lines to develop drought-tolerant rice varieties. Hence, this study will provide a solid foundation for understanding the complex phenomenon of drought stress and its utilization in future crop development programs. Though modern genetic markers are expensive, future crop development programs combined with conventional and MAS tools will help the breeders produce high-yielding and drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Muhammad A. Hassan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ni Dahu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tong Hongning
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Qian
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yi Yueming
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Yiru
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wang Shimei
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
9
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Lou D, Lu S, Chen Z, Lin Y, Yu D, Yang X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice. BMC PLANT BIOLOGY 2023; 23:53. [PMID: 36694135 PMCID: PMC9872327 DOI: 10.1186/s12870-023-04071-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.
Collapse
Affiliation(s)
- Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Suping Lu
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Zhen Chen
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Yi Lin
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
11
|
Zhao N, Yuan R, Usman B, Qin J, Yang J, Peng L, Mackon E, Liu F, Qin B, Li R. Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice ( Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1. Biomolecules 2022; 12:biom12121850. [PMID: 36551278 PMCID: PMC9775987 DOI: 10.3390/biom12121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient's genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
Collapse
Affiliation(s)
- Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ruizhi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Babar Usman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiaming Qin
- Maize Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
12
|
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z. Genetic and molecular factors in determining grain number per panicle of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:964246. [PMID: 35991390 PMCID: PMC9386260 DOI: 10.3389/fpls.2022.964246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Shailani A, Joshi R, Singla-Pareek SL, Pareek A. Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2021; 172:1352-1362. [PMID: 33180968 DOI: 10.1111/ppl.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Abiotic stresses, such as drought and salinity, adversely affect rice production and cause a severe threat to food security. Conventional crop breeding techniques alone are inadequate for achieving drought stress tolerance in crop plants. Using transgenic technology, incremental improvements in tolerance to drought and salinity have been successfully attained via manipulation of gene(s) in several crop species. However, achieving the goal via pyramiding multiple genes from the same or different tolerance mechanisms has received little attention. Pyramiding of multiple genes can be achieved either through breeding, by using marker-assisted selection, or by genetic engineering through molecular stacking co-transformation or re-transformation. Transgene stacking into a single locus has added advantages over breeding or re-transformation since the former assures co-inheritance of genes, contributing to more effective tolerance in transgenic plants for generations. Drought, being a polygenic trait, the potential candidate genes for gene stacking are those contributing to cellular detoxification, osmolyte accumulation, antioxidant machinery, and signaling pathways. Since cellular dehydration is inbuilt in salinity stress, manipulation of these genes results in improving tolerance to salinity along with drought in most of the cases. In this review, attempts have been made to provide a critical assessment of transgenic plants developed through transgene stacking and approaches to achieve the same. Identification and functional validation of more such candidate genes is needed for research programs targeting the gene stacking for developing crop plants with high precision in the shortest possible time to ensure sustainable crop productivity under marginal lands.
Collapse
Affiliation(s)
- Anjali Shailani
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Numan M, Khan AL, Asaf S, Salehin M, Beyene G, Tadele Z, Ligaba-Osena A. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [ Eragrostis tef (Zucc.) Trotter]. PLANTS (BASEL, SWITZERLAND) 2021; 10:628. [PMID: 33806233 PMCID: PMC8066236 DOI: 10.3390/plants10040628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Mohammad Salehin
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland;
| | - Ayalew Ligaba-Osena
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| |
Collapse
|
15
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|