1
|
Ma X, Wang J, Zhang H, Yao L, Si E, Li B, Meng Y, Wang H. Genetic Basis of Seedling Root Traits in Common Wheat ( Triticum aestivum L.) Identified by Genome-Wide Linkage Mapping. PLANTS (BASEL, SWITZERLAND) 2025; 14:490. [PMID: 39943052 PMCID: PMC11820154 DOI: 10.3390/plants14030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Common wheat production is significantly influenced by abiotic stresses. Identifying the genetic loci for seedling root traits and developing the available molecular markers are crucial for breeding high yielding and stable varieties. In this study, five wheat seedling root traits, including root length (RL), root surface area (RA), root volume (RV), number of root tips (RT), and root dry weight (RW), were measured in the Wp-072/Wp-119 recombinant inbred line (RIL) population. Genotyping was conducted for the RIL population and their parents using the wheat 90K single-nucleotide polymorphism (SNP) chip. In total, three quantitative trait loci (QTLs) for RL (QRL.gau-1DS, QRL.gau-1DL and QRL.gau-4AL), two QTLs for RA (QRA.gau-1D and QRA.gau-2DL), one locus for RV (QRV.gau-6AS), two loci for RW (QRW.gau-2DL and QRW.gau-2AS), and two loci for RT (QRT.gau-3AS and QRT.gau-6DL) were identified, with each explaining 4.5-8.4% of the phenotypic variances, respectively. Among these, QRT.gau-3AS, QRL.gau-4AL, and QRV.gau-6AS overlapped with the previous reports, whereas the other seven QTLs were novel. The favorable alleles of QRL.gau-1DS, QRL.gau-1DL, QRL.gau-4AL, QRA.gau-1D, QRW.gau-2AS, QRV.gau-6AS, QRT.gau-3AS, and QRT.gau-6DL were contributed by Wp-072, whereas the other two loci originated from Wp-119. Additionally, five kompetitive allele-specific PCR (KASP) markers, KASP-RL-1DL for RL, KASP-RA-1D and KASP-RA-2DL for RA, KASP-RW-2AS and KASP-RW-2DL for RW, were developed and validated successfully in 149 wheat accessions. Furthermore, seven candidate genes mainly for plant hormones were selected and validated by quantitative real-time PCR (qRT-PCR). This study provides new loci, new candidate genes, available KASP markers, and varieties for optimizing wheat root system architecture.
Collapse
Affiliation(s)
- Xiaole Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Juncheng Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Hong Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Lirong Yao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Erjing Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Yaxiong Meng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Huajun Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| |
Collapse
|
2
|
Shakir AM, Geng M, Tian J, Wang R. Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:25. [PMID: 39786445 DOI: 10.1007/s00122-024-04811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production. Among the abiotic stresses, drought is recognized as a significant stress and poses a substantial threat to food production and quality throughout the world. Raising drought tolerance of wheat varieties through genetic regulation is therefore considered as one of the most effective ways to combat the challenges caused by drought stress. Meta-QTL analysis has demonstrated its effectiveness in identifying consensus QTL regions in wheat drought resistance in numerous instances. In this study, we present a comprehensive meta-analysis aimed at unraveling the drought tolerance genetic basis associated with agronomic traits in bread wheat. Extracting data from 34 previously published studies, we aggregated a corpus of 1291 Quantitative Trait Loci (QTL) pertinent to wheat drought tolerance. Then, the translation of the consensus genetic map yielded a comprehensive compendium of 49 distinct MQTLs, each associated with diverse agronomic traits. Prominently featured among the MQTLs were MQTLs 1.1, 1.7, 1.8 (1D), 4.1 (4A), 4.6 (4D), 5.2 (5B), 6.6 (6B), and 7.2 (7B), distinguished as pivotal MQTLs offering significant potential for application in marker-assisted breeding endeavors. Altogether, a total of 66 putative candidate genes (CGs)-related drought tolerance were identified. This work illustrates a translational research approach in transferring information from published mapping studies to genomic regions hosting major QTLs governing key agronomical traits in wheat.
Collapse
Affiliation(s)
- Arif Mehmood Shakir
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Miaomiao Geng
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Jiahao Tian
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Ruihui Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China.
| |
Collapse
|
3
|
Tan C, Guo X, Dong H, Li M, Chen Q, Cheng M, Pu Z, Yuan Z, Wang J. Meta-QTL mapping for wheat thousand kernel weight. FRONTIERS IN PLANT SCIENCE 2024; 15:1499055. [PMID: 39737382 PMCID: PMC11682887 DOI: 10.3389/fpls.2024.1499055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades. We refined 242 loci into 66 MQTL, with an average confidence interval (CI) 3.06 times smaller than that of the original QTL. In these 66 MQTL regions, a total of 4,913 candidate genes related to TKW were identified, involved in ubiquitination, phytohormones, G-proteins, photosynthesis, and microRNAs. Expression analysis of the candidate genes showed that 95 were specific to grain and might potentially affect TKW at different seed development stages. These findings enhance our understanding of the genetic factors associated with TKW in wheat, providing reliable MQTL and potential candidate genes for genetic improvement of this trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
5
|
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley ( Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2137. [PMID: 39124255 PMCID: PMC11314459 DOI: 10.3390/plants13152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yuanfeng Huo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xingwu Mao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Chengyou Zhong
- College of Economics, Hunan Agricultural University, Changsha 410125, China;
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| |
Collapse
|
6
|
Vasistha NK, Sharma V, Singh S, Kaur R, Kumar A, Ravat VK, Kumar R, Gupta PK. Meta-QTL analysis and identification of candidate genes for multiple-traits associated with spot blotch resistance in bread wheat. Sci Rep 2024; 14:13083. [PMID: 38844568 PMCID: PMC11156910 DOI: 10.1038/s41598-024-63924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
In bread wheat, a literature search gave 228 QTLs for six traits, including resistance against spot blotch and the following five other related traits: (i) stay green; (ii) flag leaf senescence; (iii) green leaf area duration; (iv) green leaf area of the main stem; and (v) black point resistance. These QTLs were used for metaQTL (MQTL) analysis. For this purpose, a consensus map with 72,788 markers was prepared; 69 of the above 228 QTLs, which were suitable for MQTL analysis, were projected on the consensus map. This exercise resulted in the identification of 16 meta-QTLs (MQTLs) located on 11 chromosomes, with the PVE ranging from 5.4% (MQTL7) to 21.8% (MQTL5), and the confidence intervals ranging from 1.5 to 20.7 cM (except five MQTLs with a range of 36.1-57.8 cM). The number of QTLs associated with individual MQTLs ranged from a maximum of 17 in MQTL3 to 8 each in MQTL5 and MQTL8 and 5 each in MQTL7 and MQTL14. The 16 MQTLs, included 12 multi-trait MQTLs; one of the MQTL also overlapped a genomic region carrying the major spot blotch resistance gene Sb1. Of the total 16 MQTLs, 12 MQTLs were also validated through marker-trait associations that were available from earlier genome-wide association studies. The genomic regions associated with MQTLs were also used for the identification of candidate genes (CGs) and led to the identification of 516 CGs encoding 508 proteins; 411 of these proteins are known to be associated with resistance against several biotic stresses. In silico expression analysis of CGs using transcriptome data allowed the identification of 71 differentially expressed CGs, which were examined for further possible studies. The findings of the present study should facilitate fine-mapping and cloning of genes, enabling Marker Assisted Selection.
Collapse
Affiliation(s)
- Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Rono Hills, Itanagar, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vaishali Sharma
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Meerut Institute of Technology, NH-58 Baral Partapur Bypass Road, Meerut, India
| | - Ramandeep Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Anuj Kumar
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vikas Kumar Ravat
- Department of Plant Pathology, Rajiv Gandhi University, Rono Hills, Itanagar, India
| | - Rahul Kumar
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Pushpendra K Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India.
- Murdoch's Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia.
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India.
| |
Collapse
|
7
|
Zhang Z, Peng C, Xu W, Li Y, Qi X, Zhao M. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat. BMC Genomics 2024; 25:7. [PMID: 38166525 PMCID: PMC10759698 DOI: 10.1186/s12864-023-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Nitrogen use efficiency (NUE) is closely related to crop yield and nitrogen fertilizer application rate. Although NUE is susceptible to environments, quantitative trait nucleotides (QTNs) for NUE in wheat germplasm populations have been rarely reported in genome-wide associated study. RESULTS In this study, 244 wheat accessions were phenotyped by three NUE-related traits in three environments and genotyped by 203,224 SNPs. All the phenotypes for each trait were used to associate with all the genotypes of these SNP markers for identifying QTNs and QTN-by-environment interactions via 3VmrMLM. Among 279 QTNs and one QTN-by-environment interaction for low nitrogen tolerance, 33 were stably identified, especially, one large QTN (r2 > 10%), qPHR3A.2, was newly identified for plant height ratio in one environment and multi-environment joint analysis. Among 52 genes around qPHR3A.2, four genes (TraesCS3A01G101900, TraesCS3A01G102200, TraesCS3A01G104100, and TraesCS3A01G105400) were found to be differentially expressed in low-nitrogen-tolerant wheat genotypes, while TaCLH2 (TraesCS3A01G101900) was putatively involved in porphyrin metabolism in KEGG enrichment analyses. CONCLUSIONS This study identified valuable candidate gene for low-N-tolerant wheat breeding and provides new insights into the genetic basis of low N tolerance in wheat.
Collapse
Affiliation(s)
- Zaicheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Chaojun Peng
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Weigang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China.
| | - Yan Li
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Mingzhong Zhao
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
8
|
Sharma D, Kumari A, Sharma P, Singh A, Sharma A, Mir ZA, Kumar U, Jan S, Parthiban M, Mir RR, Bhati P, Pradhan AK, Yadav A, Mishra DC, Budhlakoti N, Yadav MC, Gaikwad KB, Singh AK, Singh GP, Kumar S. Meta-QTL analysis in wheat: progress, challenges and opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:247. [PMID: 37975911 DOI: 10.1007/s00122-023-04490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Anupma Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anshu Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Sofora Jan
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - M Parthiban
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Reyazul Rouf Mir
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Pradeep Bhati
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Anjan Kumar Pradhan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Aakash Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mahesh C Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Kiran B Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India.
| |
Collapse
|
9
|
Esposito S, Vitale P, Taranto F, Saia S, Pecorella I, D'Agostino N, Rodriguez M, Natoli V, De Vita P. Simultaneous improvement of grain yield and grain protein concentration in durum wheat by using association tests and weighted GBLUP. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:242. [PMID: 37947927 DOI: 10.1007/s00122-023-04487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
KEY MESSAGE Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant application in durum wheat breeding. Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two statistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to develop cultivars through genomic prediction approaches.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, 56129, Pisa, Italy
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Vincenzo Natoli
- Genetic Services SRL, Contrada Catenaccio, snc, 71026, Deliceto, FG, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
10
|
Jin Y, Wang Y, Liu J, Wang F, Qiu X, Liu P. Genome-wide linkage mapping of root system architecture-related traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274392. [PMID: 37900737 PMCID: PMC10612324 DOI: 10.3389/fpls.2023.1274392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Identifying loci for root system architecture (RSA) traits and developing available markers are crucial for wheat breeding. In this study, RSA-related traits, including total root length (TRL), total root area (TRA), and number of root tips (NRT), were evaluated in the Doumai/Shi4185 recombinant inbred line (RIL) population under hydroponics. In addition, both the RILs and parents were genotyped using the wheat 90K single-nucleotide polymorphism (SNP) array. In total, two quantitative trait loci (QTLs) each for TRL (QTRL.caas-4A.1 and QTRL.caas-4A.2), TRA (QTRA.caas-4A and QTRA.caas-4D), and NRT (QNRT.caas-5B and QNRT.caas-5D) were identified and each explaining 5.94%-9.47%, 6.85%-7.10%, and 5.91%-10.16% phenotypic variances, respectively. Among these, QTRL.caas-4A.1 and QTRA.caas-4A overlapped with previous reports, while QTRL.caas-4A.2, QTRA.caas-4D, QNRT.caas-5B, and QNRT.caas-5D were novel. The favorable alleles of QTRL.caas-4A.1, QTRA.caas-4A, and QTRA.caas-5B were contributed by Doumai, whereas the favorable alleles of QTRL.caas-4A.2, QTRA.caas-4D, and QTRA.caas-5D originated from Shi 4185. Additionally, two competitive allele-specific PCR (KASP) markers, Kasp_4A_RL (QTRA.caas-4A) and Kasp_5D_RT (QNRT.caas-5D), were developed and validated in 165 wheat accessions. This study provides new loci and available KASP markers, accelerating wheat breeding for higher yields.
Collapse
Affiliation(s)
- Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Yamei Wang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Jindong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuyan Wang
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Xiaodong Qiu
- Department of Science and Technology of Shandong Province, Jinan, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| |
Collapse
|
11
|
Sethi M, Saini DK, Devi V, Kaur C, Singh MP, Singh J, Pruthi G, Kaur A, Singh A, Chaudhary DP. Unravelling the genetic framework associated with grain quality and yield-related traits in maize ( Zea mays L.). Front Genet 2023; 14:1248697. [PMID: 37609038 PMCID: PMC10440565 DOI: 10.3389/fgene.2023.1248697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
Maize serves as a crucial nutrient reservoir for a significant portion of the global population. However, to effectively address the growing world population's hidden hunger, it is essential to focus on two key aspects: biofortification of maize and improving its yield potential through advanced breeding techniques. Moreover, the coordination of multiple targets within a single breeding program poses a complex challenge. This study compiled mapping studies conducted over the past decade, identifying quantitative trait loci associated with grain quality and yield related traits in maize. Meta-QTL analysis of 2,974 QTLs for 169 component traits (associated with quality and yield related traits) revealed 68 MQTLs across different genetic backgrounds and environments. Most of these MQTLs were further validated using the data from genome-wide association studies (GWAS). Further, ten MQTLs, referred to as breeding-friendly MQTLs (BF-MQTLs), with a significant phenotypic variation explained over 10% and confidence interval less than 2 Mb, were shortlisted. BF-MQTLs were further used to identify potential candidate genes, including 59 genes encoding important proteins/products involved in essential metabolic pathways. Five BF-MQTLs associated with both quality and yield traits were also recommended to be utilized in future breeding programs. Synteny analysis with wheat and rice genomes revealed conserved regions across the genomes, indicating these hotspot regions as validated targets for developing biofortified, high-yielding maize varieties in future breeding programs. After validation, the identified candidate genes can also be utilized to effectively model the plant architecture and enhance desirable quality traits through various approaches such as marker-assisted breeding, genetic engineering, and genome editing.
Collapse
Affiliation(s)
- Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohini Prabha Singh
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jasneet Singh
- Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Gomsie Pruthi
- Department of Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam Paul Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
12
|
Guo Y, Wang G, Guo X, Chi S, Yu H, Jin K, Huang H, Wang D, Wu C, Tian J, Chen J, Bao Y, Zhang W, Deng Z. Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1189887. [PMID: 37377808 PMCID: PMC10291175 DOI: 10.3389/fpls.2023.1189887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
Protein, starch, and their components are important for wheat grain yield and end-products, which are affected by wheat grain development. Therefore, QTL mapping and a genome-wide association study (GWAS) of grain protein content (GPC), glutenin macropolymer content (GMP), amylopectin content (GApC), and amylose content (GAsC) were performed on wheat grain development at 7, 14, 21, and 28 days after anthesis (DAA) in two environments using a recombinant inbred line (RIL) population of 256 stable lines and a panel of 205 wheat accessions. A total of 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations (MTAs), and 14 conditional MTAs significantly associated (p < 10-4) with four quality traits were found to be distributed on 15 chromosomes, with the phenotypic variation explained (PVE) ranging from 5.35% to 39.86%. Among these genomic variations, three major QTLs [QGPC3B, QGPC2A, and QGPC(S3|S2)3B] and SNP clusters on the 3A and 6B chromosomes were detected for GPC, and the SNP TA005876-0602 was stably expressed during the three periods in the natural population. The QGMP3B locus was detected five times in three developmental stages in two environments with 5.89%-33.62% PVE, and SNP clusters for GMP content were found on the 3A and 3B chromosomes. For GApC, the QGApC3B.1 locus had the highest PVE of 25.69%, and SNP clusters were found on chromosomes 4A, 4B, 5B, 6B, and 7B. Four major QTLs of GAsC were detected at 21 and 28 DAA. Most interestingly, both QTL mapping and GWAS analysis indicated that four chromosomes (3B, 4A, 6B, and 7A) were mainly involved in the development of protein, GMP, amylopectin, and amylose synthesis. Of these, the wPt-5870-wPt-3620 marker interval on chromosome 3B seemed to be most important because it played an important role in the synthesis of GMP and amylopectin before 7 DAA, in the synthesis of protein and GMP from 14 to 21 DAA, and in the development of GApC and GAsC from 21 to 28 DAA. Using the annotation information of IWGSC Chinese Spring RefSeq v1.1 genome assembly, we predicted 28 and 69 candidate genes for major loci from QTL mapping and GWAS, respectively. Most of them have multiple effects on protein and starch synthesis during grain development. These results provide new insights and information for the potential regulatory network between grain protein and starch synthesis.
Collapse
Affiliation(s)
- Yingxin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong, China
| | - Guanying Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- Taiyuan Agro-Tech Extension and Service Center, Taiyuan, Shanxi, China
| | - Songqi Chi
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hui Yu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Kaituo Jin
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Heting Huang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Dehua Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chongning Wu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jichun Tian
- R&D Department, Shandong Huatian Agricultural Technology Co., Ltd, Feicheng, Shandong, China
| | - Jiansheng Chen
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yinguang Bao
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Weidong Zhang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhiying Deng
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
13
|
Zeng Z, Song S, Ma J, Hu D, Xu Y, Hou Y, He C, Tang X, Lan T, Zeng J, Gao X, Chen G. QTL Mapping of Agronomic and Physiological Traits at the Seedling and Maturity Stages under Different Nitrogen Treatments in Barley. Int J Mol Sci 2023; 24:ijms24108736. [PMID: 37240081 DOI: 10.3390/ijms24108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.
Collapse
Affiliation(s)
- Zhaoyong Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Song
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengjun He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
15
|
Kumar A, Saini DK, Saripalli G, Sharma PK, Balyan HS, Gupta PK. Meta-QTLs, ortho-meta QTLs and related candidate genes for yield and its component traits under water stress in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:525-542. [PMID: 37187772 PMCID: PMC10172426 DOI: 10.1007/s12298-023-01301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Meta-QTLs (MQTLs), ortho-MQTLs, and related candidate genes (CGs) for yield and its seven component traits evaluated under water deficit conditions were identified in wheat. For this purpose, a high density consensus map and 318 known QTLs were used for identification of 56 MQTLs. Confidence intervals (CIs) of the MQTLs were narrower (0.7-21 cM; mean = 5.95 cM) than the CIs of the known QTLs (0.4-66.6 cM; mean = 12.72 cM). Forty-seven MQTLs were co-located with marker trait associations reported in previous genome-wide association studies. Nine selected MQTLs were declared as 'breeders MQTLs' for use in marker-assisted breeding (MAB). Utilizing known MQTLs and synteny/collinearity among wheat, rice and maize, 12 ortho-MQTLs were also identified. A total of 1497 CGs underlying MQTLs were also identified, which were subjected to in-silico expression analysis, leading to identification of 64 differentially expressed CGs (DECGs) under normal and water deficit conditions. These DECGs encoded a variety of proteins, including the following: zinc finger, cytochrome P450, AP2/ERF domain-containing proteins, plant peroxidase, glycosyl transferase, glycoside hydrolase. The expression of 12 CGs at seedling stage (3 h stress) was validated using qRT-PCR in two wheat genotypes, namely Excalibur (drought tolerant) and PBW343 (drought sensitive). Nine of the 12 CGs were up-regulated and three down-regulated in Excalibur. The results of the present study should prove useful for MAB, for fine mapping of promising MQTLs and for cloning of genes across the three cereals studied. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01301-z.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | | | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
16
|
Karnatam KS, Chhabra G, Saini DK, Singh R, Kaur G, Praba UP, Kumar P, Goyal S, Sharma P, Ranjan R, Sandhu SK, Kumar R, Vikal Y. Genome-Wide Meta-Analysis of QTLs Associated with Root Traits and Implications for Maize Breeding. Int J Mol Sci 2023; 24:6135. [PMID: 37047112 PMCID: PMC10093813 DOI: 10.3390/ijms24076135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Simran Goyal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Rumesh Ranjan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Surinder K. Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Ramesh Kumar
- Indian Institute of Maize Research, Ludhiana 141001, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| |
Collapse
|
17
|
Kong B, Ma J, Zhang P, Chen T, Liu Y, Che Z, Shahinnia F, Yang D. Deciphering key genomic regions controlling flag leaf size in wheat via integration of meta-QTL and in silico transcriptome assessment. BMC Genomics 2023; 24:33. [PMID: 36658498 PMCID: PMC9854125 DOI: 10.1186/s12864-023-09119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Grain yield is a complex and polygenic trait influenced by the photosynthetic source-sink relationship in wheat. The top three leaves, especially the flag leaf, are considered the major sources of photo-assimilates accumulated in the grain. Determination of significant genomic regions and candidate genes affecting flag leaf size can be used in breeding for grain yield improvement. RESULTS With the final purpose of understanding key genomic regions for flag leaf size, a meta-analysis of 521 initial quantitative trait loci (QTLs) from 31 independent QTL mapping studies over the past decades was performed, where 333 loci eventually were refined into 64 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs was 5.28 times less than that of the initial QTLs. Thirty-three MQTLs overlapped the marker trait associations (MTAs) previously reported in genome-wide association studies (GWAS) for flag leaf traits in wheat. A total of 2262 candidate genes for flag leaf size, which were involved in the peroxisome, basal transcription factor, and tyrosine metabolism pathways were identified in MQTL regions by the in silico transcriptome assessment. Of these, the expression analysis of the available genes revealed that 134 genes with > 2 transcripts per million (TPM) were highly and specifically expressed in the leaf. These candidate genes could be critical to affect flag leaf size in wheat. CONCLUSIONS The findings will make further insight into the genetic determinants of flag leaf size and provide some reliable MQTLs and putative candidate genes for the genetic improvement of flag leaf size in wheat.
Collapse
Affiliation(s)
- Binxue Kong
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Lanzhou, 730000, China
| | - Fahimeh Shahinnia
- Bavarian State Research Centre for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Ma J, Liu Y, Zhang P, Chen T, Tian T, Wang P, Che Z, Shahinnia F, Yang D. Identification of quantitative trait loci (QTL) and meta-QTL analysis for kernel size-related traits in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:607. [PMID: 36550393 PMCID: PMC9784057 DOI: 10.1186/s12870-022-03989-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kernel size-related traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR) and kernel thickness (KT), are critical determinants for wheat kernel weight and yield and highly governed by a type of quantitative genetic basis. Genome-wide identification of major and stable quantitative trait loci (QTLs) and functional genes are urgently required for genetic improvement in wheat kernel yield. A hexaploid wheat population consisting of 120 recombinant inbred lines was developed to identify QTLs for kernel size-related traits under different water environments. The meta-analysis and transcriptome evaluation were further integrated to identify major genomic regions and putative candidate genes. RESULTS The analysis of variance (ANOVA) revealed more significant genotypic effects for kernel size-related traits, indicating the moderate to high heritability of 0.61-0.89. Thirty-two QTLs for kernel size-related traits were identified, explaining 3.06%-14.2% of the phenotypic variation. Eleven stable QTLs were detected in more than three water environments. The 1103 original QTLs from the 34 previous studies and the present study were employed for the MQTL analysis and refined into 58 MQTLs. The average confidence interval of the MQTLs was 3.26-fold less than that of the original QTLs. The 1864 putative candidate genes were mined within the regions of 12 core MQTLs, where 70 candidate genes were highly expressed in spikes and kernels by comprehensive analysis of wheat transcriptome data. They were involved in various metabolic pathways, such as carbon fixation in photosynthetic organisms, carbon metabolism, mRNA surveillance pathway, RNA transport and biosynthesis of secondary metabolites. CONCLUSIONS Major genomic regions and putative candidate genes for kernel size-related traits in wheat have been revealed by an integrative strategy with QTL linkage mapping, meta-analysis and transcriptomic assessment. The findings provide a novel insight into understanding the genetic determinants of kernel size-related traits and will be useful for the marker-assisted selection of high yield in wheat breeding.
Collapse
Grants
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- Key Sci & Tech Special Project of Gansu Province
Collapse
Affiliation(s)
- Jingfu Ma
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Peipei Zhang
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China
| | - Tao Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tian Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Peng Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Lanzhou, Gansu, China
| | - Fahimeh Shahinnia
- Institute for Crop Science and Plant Breeding, Bavarian State Research Centre for Agriculture, Freising, Germany
| | - Delong Yang
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
19
|
Aloryi KD, Okpala NE, Amo A, Bello SF, Akaba S, Tian X. A meta-quantitative trait loci analysis identified consensus genomic regions and candidate genes associated with grain yield in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1035851. [PMID: 36466247 PMCID: PMC9709451 DOI: 10.3389/fpls.2022.1035851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Improving grain yield potential in rice is an important step toward addressing global food security challenges. The meta-QTL analysis offers stable and robust QTLs irrespective of the genetic background of mapping populations and phenotype environment and effectively narrows confidence intervals (CI) for candidate gene (CG) mining and marker-assisted selection improvement. To achieve these aims, a comprehensive bibliographic search for grain yield traits (spikelet fertility, number of grains per panicle, panicles number per plant, and 1000-grain weight) QTLs was conducted, and 462 QTLs were retrieved from 47 independent QTL research published between 2002 and 2022. QTL projection was performed using a reference map with a cumulative length of 2,945.67 cM, and MQTL analysis was conducted on 313 QTLs. Consequently, a total of 62 MQTLs were identified with reduced mean CI (up to 3.40 fold) compared to the mean CI of original QTLs. However, 10 of these MQTLs harbored at least six of the initial QTLs from diverse genetic backgrounds and environments and were considered the most stable and robust MQTLs. Also, MQTLs were compared with GWAS studies and resulted in the identification of 16 common significant loci modulating the evaluated traits. Gene annotation, gene ontology (GO) enrichment, and RNA-seq analyses of chromosome regions of the stable MQTLs detected 52 potential CGs including those that have been cloned in previous studies. These genes encode proteins known to be involved in regulating grain yield including cytochrome P450, zinc fingers, MADs-box, AP2/ERF domain, F-box, ubiquitin ligase domain protein, homeobox domain, DEAD-box ATP domain, and U-box domain. This study provides the framework for molecular dissection of grain yield in rice. Moreover, the MQTLs and CGs identified could be useful for fine mapping, gene cloning, and marker-assisted selection to improve rice productivity.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Aduragbemi Amo
- Institute of Plant Breeding, Genetics and Genomics University of Georgia, Athens, GA, United States
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
20
|
Du B, Wu J, Islam MS, Sun C, Lu B, Wei P, Liu D, Chen C. Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat. PLoS One 2022; 17:e0276602. [PMID: 36279291 PMCID: PMC9591062 DOI: 10.1371/journal.pone.0276602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
21
|
Saini P, Sheikh I, Saini DK, Mir RR, Dhaliwal HS, Tyagi V. Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat. Front Genet 2022; 13:1021180. [PMID: 36246648 PMCID: PMC9554612 DOI: 10.3389/fgene.2022.1021180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
A meta-analysis of QTLs associated with grain protein content (GPC) was conducted in hexaploid and tetraploid wheat to identify robust and stable meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs retrieved from 48 linkage-based QTL mapping studies were projected onto the newly developed wheat consensus map. The analysis resulted in the prediction of 57 MQTLs and 7 QTL hotspots located on all wheat chromosomes (except chromosomes 1D and 4D) and the average confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots compared to the initial QTLs. The physical regions occupied by the MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also found to be co-localized with 45 significant SNPs identified in 16 previously published genome-wide association studies in wheat. Candidate gene (CG) investigation within some selected MQTLs led to the identification of 705 gene models which also included 96 high-confidence CGs showing significant expressions in different grain-related tissues and having probable roles in GPC regulation. These significantly expressed CGs mainly involved the genes/gene families encoding for the following proteins: aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-1By9, TaBiP1, GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known to be associated with GPC were also detected within some of the MQTL regions confirming the efficacy of MQTLs predicted during the current study.
Collapse
Affiliation(s)
- Pooja Saini
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Imran Sheikh
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punajb Agricultural University, Ludhiana, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture SKUAST-Kashmir, Srinagar, India
| | - Harcharan Singh Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Vikrant Tyagi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| |
Collapse
|
22
|
Arriagada O, Gadaleta A, Marcotuli I, Maccaferri M, Campana M, Reveco S, Alfaro C, Matus I, Schwember AR. A comprehensive meta-QTL analysis for yield-related traits of durum wheat ( Triticum turgidum L. var. durum) grown under different water regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:984269. [PMID: 36147234 PMCID: PMC9486101 DOI: 10.3389/fpls.2022.984269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 05/13/2023]
Abstract
Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Campana
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samantha Reveco
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Alfaro
- Centro Regional Rayentue, Instituto de Investigaciones Agropecuarias (INIA), Rengo, Chile
| | - Iván Matus
- Centro Regional Quilamapu, Instituto de Investigaciones Agropecuarias (INIA), Chillán, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Marcotuli I, Soriano JM, Gadaleta A. A consensus map for quality traits in durum wheat based on genome-wide association studies and detection of ortho-meta QTL across cereal species. Front Genet 2022; 13:982418. [PMID: 36110219 PMCID: PMC9468538 DOI: 10.3389/fgene.2022.982418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The present work focused on the identification of durum wheat QTL hotspots from a collection of genome-wide association studies, for quality traits, such as grain protein content and composition, yellow color, fiber, grain microelement content (iron, magnesium, potassium, selenium, sulfur, calcium, cadmium), kernel vitreousness, semolina, and dough quality test. For the first time a total of 10 GWAS studies, comprising 395 marker-trait associations (MTA) on 57 quality traits, with more than 1,500 genotypes from 9 association panels, were used to investigate consensus QTL hotspots representative of a wide durum wheat genetic variation. MTA were found distributed on all the A and B genomes chromosomes with minimum number of MTA observed on chromosome 5B (15) and a maximum of 45 on chromosome 7A, with an average of 28 MTA per chromosome. The MTA were equally distributed on A (48%) and B (52%) genomes and allowed the identification of 94 QTL hotspots. Synteny maps for QTL were also performed in Zea mays, Brachypodium, and Oryza sativa, and candidate gene identification allowed the association of genes involved in biological processes playing a major role in the control of quality traits.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Shafi S, Saini DK, Khan MA, Bawa V, Choudhary N, Dar WA, Pandey AK, Varshney RK, Mir RR. Delineating meta-quantitative trait loci for anthracnose resistance in common bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:966339. [PMID: 36092444 PMCID: PMC9453441 DOI: 10.3389/fpls.2022.966339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 05/03/2023]
Abstract
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the devastating disease affecting common bean production and productivity worldwide. Several quantitative trait loci (QTLs) for anthracnose resistance have been identified. In order to make use of these QTLs in common bean breeding programs, a detailed meta-QTL (MQTL) analysis has been conducted. For the MQTL analysis, 92 QTLs related to anthracnose disease reported in 18 different earlier studies involving 16 mapping populations were compiled and projected on to the consensus map. This meta-analysis led to the identification of 11 MQTLs (each involving QTLs from at least two different studies) on 06 bean chromosomes and 10 QTL hotspots each involving multiple QTLs from an individual study on 07 chromosomes. The confidence interval (CI) of the identified MQTLs was found 3.51 times lower than the CI of initial QTLs. Marker-trait associations (MTAs) reported in published genome-wide association studies (GWAS) were used to validate nine of the 11 identified MQTLs, with MQTL4.1 overlapping with as many as 40 MTAs. Functional annotation of the 11 MQTL regions revealed 1,251 genes including several R genes (such as those encoding for NBS-LRR domain-containing proteins, protein kinases, etc.) and other defense related genes. The MQTLs, QTL hotspots and the potential candidate genes identified during the present study will prove useful in common bean marker-assisted breeding programs and in basic studies involving fine mapping and cloning of genomic regions associated with anthracnose resistance in common beans.
Collapse
Affiliation(s)
- Safoora Shafi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Vanya Bawa
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Jammu, Chatha, Jammu and Kashmir, India
| | - Neeraj Choudhary
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Jammu, Chatha, Jammu and Kashmir, India
| | - Waseem Ali Dar
- Mountain Agriculture Research and Extension Station, SKUAST-Kashmir, Bandipora, Jammu and Kashmir, India
| | - Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Rajeev Kumar Varshney
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| |
Collapse
|
25
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 PMCID: PMC9372038 DOI: 10.1038/s41598-022-18149-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
26
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 DOI: 10.1101/2022.06.24.497482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 05/20/2023] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
27
|
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Kumar S, Balyan HS, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2385-2405. [PMID: 35699741 DOI: 10.1007/s00122-022-04119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
28
|
Gudi S, Saini DK, Singh G, Halladakeri P, Kumar P, Shamshad M, Tanin MJ, Singh S, Sharma A. Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci. PLANTA 2022; 255:115. [PMID: 35508739 DOI: 10.1007/s00425-022-03904-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 05/03/2023]
Abstract
Meta-analysis in wheat for three major quality traits identified 110 meta-QTL (MQTL) with reduced confidence interval (CI). Five GWAS validated MQTL (viz., 1A.1, 1B.2, 3B.4, 5B.2, and 6B.2), each involving more than 20 initial QTL and reduced CI (95%) (< 2 cM), were selected for quality breeding programmes. Functional characterization including candidate gene mining and expression analysis discovered 44 high confidence candidate genes associated with quality traits. A meta-analysis of quantitative trait loci (QTL) associated with dough rheology properties, nutritional traits, and processing quality traits was conducted in wheat. For this purpose, as many as 2458 QTL were collected from 50 interval mapping studies published during 2013-2020. Of the total QTL, 1126 QTL were projected onto the consensus map saturated with 249,603 markers which led to the identification of 110 meta-QTL (MQTL). These MQTL exhibited an 18.84-fold reduction in the average CI compared to the average CI of the initial QTL (ranging from 14.87 to 95.55 cM with an average of 40.35 cM). Of the 110, 108 MQTL were physically anchored to the wheat reference genome, including 51 MQTL verified with marker-trait associations (MTAs) reported from earlier genome-wide association studies. Candidate gene (CG) mining allowed the identification of 2533 unique gene models from the MQTL regions. In-silico expression analysis discovered 439 differentially expressed gene models with > 2 transcripts per million expressions in grains and related tissues, which also included 44 high-confidence CGs involved in the various cellular and biochemical processes related to quality traits. Nine functionally characterized wheat genes associated with grain protein content, high-molecular-weight glutenin, and starch synthase enzymes were also found to be co-localized with some of the MQTL. Synteny analysis between wheat and rice MQTL regions identified 23 wheat MQTL syntenic to 16 rice MQTL associated with quality traits. Furthermore, 64 wheat orthologues of 30 known rice genes were detected in 44 MQTL regions. Markers flanking the MQTL identified in the present study can be used for marker-assisted breeding and as fixed effects in the genomic selection models for improving the prediction accuracy during quality breeding. Wheat orthologues of rice genes and other CGs available from MQTLs can be promising targets for further functional validation and to better understand the molecular mechanism underlying the quality traits in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Gujarat, India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammad Shamshad
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
29
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
30
|
Singh R, Saripalli G, Gautam T, Kumar A, Jan I, Batra R, Kumar J, Kumar R, Balyan HS, Sharma S, Gupta PK. Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:637-650. [PMID: 35465199 PMCID: PMC8986950 DOI: 10.1007/s12298-022-01149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/06/2023]
Abstract
Majority of cereals are deficient in essential micronutrients including grain iron (GFe) and grain zinc (GZn), which are therefore the subject of research involving biofortification. In the present study, 11 meta-QTLs (MQTLs) including nine novel MQTLs for GFe and GZn contents were identified in wheat. Eight of these 11 MQTLs controlled both GFe and GZn. The confidence intervals of the MQTLs were narrower (0.51-15.75 cM) relative to those of the corresponding QTLs (0.6 to 55.1 cM). Two ortho-MQTLs involving three cereals (wheat, rice and maize) were also identified. Results of MQTLs were also compared with the results of earlier genome wide association studies (GWAS). As many as 101 candidate genes (CGs) underlying MQTLs were also identified. Twelve of these CGs were prioritized; these CGs encoded proteins with important domains (zinc finger, RING/FYVE/PHD type, flavin adenine dinucleotide linked oxidase, etc.) that are involved in metal ion binding, heme binding, iron binding, etc. qRT-PCR analysis was conducted for four of these 12 prioritized CGs using genotypes which have differed for GFe and GZn. Significant differential expression in these genotypes was observed at 14 and 28 days after anthesis. The MQTLs/CGs identified in the present study may be utilized in marker-assisted selection (MAS) for improvement of GFe/GZn contents and also for understanding the molecular basis of GFe/GZn homeostasis in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01149-9.
Collapse
Affiliation(s)
- Rakhi Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD-20742 College Park, MD United States
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Jitendra Kumar
- Dept. of Biotechnology, Govt. of India, National Agri-Food Biotechnology Institute (NABI), Sector 81 (Knowledge City), S.A.S. Nagar, 140306 Mohali, Punjab India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| |
Collapse
|
31
|
Saini DK, Srivastava P, Pal N, Gupta PK. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1049-1081. [PMID: 34985537 DOI: 10.1007/s00122-021-04018-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
In wheat, 2852 major QTLs of 8998 QTLs available for yield and related traits were used for meta-analysis; 141 meta-QTLs were identified, which included 13 breeder's MQTLs and 24 ortho-MQTLs; 1202 candidate genes and 50 homologues of genes for yield from other cereals were also identified. Meta-QTL analysis was conducted using 2852 of the 8998 known QTLs, retrieved from 230 reports published during 1999-2020 (including 19 studies on tetraploid wheat) for grain yield (GY) and the following ten component traits: (i) grain weight (GWei), (ii) grain morphology-related traits (GMRTs), (iii) grain number (GN), (iv) spikes-related traits (SRTs), (v) plant height (PH), (vi) tiller number (TN), (vii) harvest index (HI), (viii) biomass yield (BY), (ix) days to heading/flowering and maturity (DTH/F/M), and (x) grain filling duration (GFD). The study resulted in the identification of 141 meta-QTLs (MQTLs), with an average confidence interval (CI) of 1.4 cM as against a CI of > 12.1 cM (8.8 fold reduction) in the QTLs that were used. The corresponding physical length of CI ranged from 0.01 Mb to 661.9 Mb (mean, 31.5 Mb). Seventy-seven (77) of these 141 MQTLs overlapped marker-trait associations (MTAs) reported in genome-wide association studies. Also, 63 MQTLs (each based on at least 10 QTLs) were considered stable and robust, with 13 MQTLs described as breeder's MQTLs (selected based on small CI, large LOD, and high level of phenotypic variation explained). Thirty-five yield-related genes from rice, barley, and maize were also utilized to identify 50 wheat homologues in MQTLs. Further, the use of synteny and collinearity allowed the identification of 24 ortho-MQTLs which were common among the wheat, barley, rice, and maize. The results of the present study should prove useful for wheat breeding and future basic research in cereals including wheat, barley, rice, and maize.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| |
Collapse
|
32
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
33
|
Teng W, He X, Tong Y. Genetic Control of Efficient Nitrogen Use for High Yield and Grain Protein Concentration in Wheat: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040492. [PMID: 35214826 PMCID: PMC8878021 DOI: 10.3390/plants11040492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield components to N availability and assimilates allocation to grains provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-anthesis N uptake and N allocation to grains.
Collapse
Affiliation(s)
- Wan Teng
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Xue He
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
| | - Yiping Tong
- The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (W.T.); (X.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64806556
| |
Collapse
|
34
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
35
|
Pal N, Saini DK, Kumar S. Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2767-2786. [PMID: 35035135 PMCID: PMC8720133 DOI: 10.1007/s12298-021-01112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
A meta-analysis of QTLs associated with the traits contributing to salinity tolerance was undertaken in wheat to detect consensus and robust meta-QTLs (MQTLs) using 844 known QTLs retrieved from 26 earlier studies. A consensus map with a total length of 4621.56 cM including 7710 markers was constructed using 21 individual linkage maps and three previously published integrated genetic maps. Out of 844 QTLs, 571 QTLs were projected on the consensus map which gave origin to 100 MQTLs. Interestingly, 49 MQTLs were co-located with marker-trait associations reported in wheat genome-wide association studies for the traits contributing to salinity stress tolerance. Five potential MQTLs associated with the major salinity-responsive traits were also identified to be utilized in the breeding programme. In the resulted MQTLs, the average confidence interval (CI, 3.58 cM) was reduced up to 4.16 folds compared to the mean CI of the initial QTLs. Furthermore, as many as 617 gene models including 81 most likely candidate genes (CGs) were identified in the high confidence MQTL regions. These most likely CGs encoded proteins mainly belonging to the following families: B-box-type zinc finger, cytochrome P450 protein, pentatricopeptide repeat, phospholipid/glycerol acyltransferase, F-box protein, small auxin-up RNA, UDP-glucosyltransferase, glutathione S-transferase protein, etc. In addition, ortho-MQTL analysis based on synteny among wheat, rice and barley was also performed which permitted the identification of six ortho-MQTLs among these three cereals. This meta-analysis defines a genome-wide landscape on the most stable and consistent loci associated with reliable molecular markers and candidate genes for salinity tolerance in wheat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01112-0.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|