1
|
Steens W, Zinser W, Rößler P, Heyse T. Infiltration therapy in the context of cartilage surgery. Arch Orthop Trauma Surg 2024; 144:3913-3923. [PMID: 37400671 PMCID: PMC11564373 DOI: 10.1007/s00402-023-04964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Guideline-based surgical cartilage therapy for focal cartilage damage offers highly effective possibilities to sustainably reduce patients' complaints and to prevent or at least delay the development of early osteoarthritis. In the knee joint, it has the potential to reduce almost a quarter of the arthroses requiring joint replacement caused by cartilage damage. Biologically effective injection therapies could further improve these results. Based on the currently available literature and preclinical studies, intra- and postoperative injectables may have a positive effect of platelet-rich plasma/fibrin (PRP/PRF) and hyaluronic acid (HA) on cartilage regeneration and, in the case of HA injections, also on the clinical outcome can be assumed. The role of a combination therapy with use of intra-articular corticosteroids is lacking in the absence of adequate study data and cannot be defined yet. With regard to adipose tissue-based cell therapy, the current scientific data do not yet justify any recommendation for its use. Further studies also regarding application intervals, timing and differences in different joints are required.
Collapse
Affiliation(s)
- Wolfram Steens
- Department of Orthopaedics, University Medicine, 18057, Rostock, Germany.
- Orthopaedic-Neurosurgery Center, Roentgenstrasse 10, 45661, Recklinghausen, Germany.
| | - Wolfgang Zinser
- Orthoexpert, 8724, Knittelfeld, Austria
- AUVA-Unfallkrankenhaus Steiermark, 8775, Kalwang, Austria
| | - Philip Rößler
- Joint Center, Middelrhine, 56068, Koblenz, Germany
- Department of Orthopaedic and Trauma Surgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Heyse
- Center of Orthopedics and Traumatology, University Hospital Marburg, 35033, Marburg, Germany
- Orthomedic Joint Center, Frankfurt Offenbach, 63065, Offenbach, Germany
| |
Collapse
|
2
|
Liang Y, Li J, Wang Y, He J, Chen L, Chu J, Wu H. Platelet Rich Plasma in the Repair of Articular Cartilage Injury: A Narrative Review. Cartilage 2022; 13:19476035221118419. [PMID: 36086807 PMCID: PMC9465610 DOI: 10.1177/19476035221118419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE This paper reviews the research of platelet-rich plasma (PRP) in articular cartilage injury repair, to assess the mechanism, utilization, and efficacy of PRP in the treatment of articular cartilage injury, hoping to provide a theoretical basis for the clinical application of PRP in the future. MATERIALS AND METHODS A comprehensive database search on PRP applications in cartilage repair was performed. Among them, the retrieval time range of PRP in clinical trials of repairing knee cartilage injury was from January 1, 2021 to January 1, 2022. Non-clinical trials and studies unrelated to cartilage injury were excluded. RESULT PRP can affect inflammation, angiogenesis, cartilage protection, and cellular proliferation and differentiation after articular cartilage injury through different pathways. In all, 13 clinical trials were included in the analysis. CONCLUSION PRP is an emergent therapeutic approach in tissue engineering. Most studies reported that PRP has a positive effect on cartilage injury, improving the joint function, meanwhile there is a lack of standardized standards. The technology of PRP in the repair and treatment of articular cartilage injury is worthy of further research.
Collapse
Affiliation(s)
- Yinru Liang
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Juan Li
- Department of Plastic Surgery,
Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu
District Maternal and Child Health Care Hospital), Guangzhou, China
| | - Yuhui Wang
- Department of Surgery, The Third
Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde
District), Foshan, China
| | - Junchu He
- Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Liji Chen
- Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Jiaqi Chu
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Jiaqi Chu, Stem Cell Research &
Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University,
Zhanjiang 524001, China.
| | - Hongfu Wu
- Stem Cell Research & Cellular
Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,Key Laboratory of Stem Cell and
Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| |
Collapse
|
3
|
Infiltration nach chirurgischer Knorpeltherapie. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhu Y, Fu W. Peripheral Blood-Derived Stem Cells for the Treatment of Cartilage Injuries: A Systematic Review. Front Bioeng Biotechnol 2022; 10:956614. [PMID: 35935493 PMCID: PMC9355401 DOI: 10.3389/fbioe.2022.956614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The treatment of cartilage damage is a hot topic at present, and cell therapy is an emerging alternative therapy. Stem cells derived from peripheral blood have become the focus of current research due to the ease of obtaining materials and a wide range of sources.Methods: We used a text search strategy using the [“mesenchymal stem cells” (MeSH term) OR “MSC” OR “BMMSC” OR “PBMSC” OR” PBMNC” OR “peripheral blood stem cells”] AND (cartilage injury [MeSH term] OR “cartilage” OR “chondral lesion”). After searching the literature, through the inclusion and exclusion criteria, the last included articles were systematically reviewed.Result: We found that peripheral blood-derived stem cells have chondrogenic differentiation ability and can induce chondrogenic differentiation and repair in vivo and have statistical significance in clinical and imaging prognosis. It is an improvement of academic differences. Compared with the bone marrow, peripheral blood is easier to obtain, widely sourced, and simple to obtain. In the future, peripheral blood will be a more potential cell source for cell therapy in the treatment of cartilage damage.Conclusion: Stem cells derived from peripheral blood can repair cartilage and are an important resource for the treatment of cartilage damage in the future. The specific mechanism and way of repairing cartilage need further study.
Collapse
|
5
|
Papadopoulos KI, Paisan M, Sutheesophon W, Turajane T. Regarding "Mobilized Peripheral Blood Stem Cells are Pluripotent and Can be Safely Harvested and Stored for Cartilage Repair". Arthroscopy 2021; 37:3389-3390. [PMID: 34863374 DOI: 10.1016/j.arthro.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023]
Affiliation(s)
| | | | | | - Thana Turajane
- Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| |
Collapse
|
6
|
Papadopoulos KI, Paisan M, Sutheesophon W, Turajane T. Novel Use of Intraarticular Granulocyte Colony Stimulating Factor (hG-CSF) Combined with Activated Autologous Peripheral Blood Stem Cells Mobilized with Systemic hG-CSF: Safe and Efficient in Early Osteoarthritis. Cartilage 2021; 13:1671S-1674S. [PMID: 34636658 PMCID: PMC8808774 DOI: 10.1177/19476035211049562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) tends to occur in older individuals frequently burdened with comorbidities and diverse pharmacological interactions. As articular cartilage has low regenerative power, potent local tissue engineering approaches are needed to support chondrogenic differentiation. Acellular preparation methods as well as approaches to coax endogenous reparative cells into the joint space appear to have limited success. Supported by our in-vitro and clinical studies, we propose that our novel intra-articular administration of human granulocyte colony stimulating factor (IA-hG-CSF) combined with autologous activated peripheral blood stem cells (AAPBSC) is safe and offers treatment advantages not seen with other cellular interventions in early osteoarthritis.
Collapse
Affiliation(s)
| | | | | | - Thana Turajane
- Department of Orthopedic Surgery, Police
General Hospital, Bangkok, Thailand
| |
Collapse
|
7
|
Papadopoulos KI, Turajane T. Erratum: Commentary: Autologous Peripheral Blood Stem Cells (PBSC) are Safe and Effective in Knee Osteoarthritis. Front Pharmacol 2021; 12:652738. [PMID: 33959019 PMCID: PMC8093874 DOI: 10.3389/fphar.2021.652738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fphar.2020.00404.].
Collapse
Affiliation(s)
| | - Thana Turajane
- Department of Orthopedics, Police General Hospital, Bangkok, Thailand
| |
Collapse
|
8
|
Xu B, Ye J, Yuan FZ, Zhang JY, Chen YR, Fan BS, Jiang D, Jiang WB, Wang X, Yu JK. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front Bioeng Biotechnol 2020; 8:247. [PMID: 32296692 PMCID: PMC7136426 DOI: 10.3389/fbioe.2020.00247] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteochondral damage from trauma or osteoarthritis is a general joint disease that can lead to an increased social and economic burden in the modern society. The inefficiency of osteochondral defects is mainly due to the absence of suitable tissue-engineered substrates promoting tissue regeneration and replacing damaged areas. The hydrogels are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic hydrogel microenvironment can be tightly controlled by modulating a number of biophysical and biochemical properties, including matrix mechanics, degradation, microstructure, cell adhesion, and intercellular interactions. In particular, advances in stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral repair. Herein, the aim of this review is to underpin the importance of stem cell-laden hydrogels on promoting the development of osteochondral regeneration, especially in the field of manipulation of biomimetic microenvironment and utilization growth factors with various delivery methods.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Zhang Q, Nettleship I, Schmelzer E, Gerlach J, Zhang X, Wang J, Liu C. Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:64-78. [DOI: 10.1089/ten.teb.2019.0215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qinghao Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ian Nettleship
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jorg Gerlach
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xuewei Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jing Wang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Changsheng Liu
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|
10
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
11
|
Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of Total Knee Arthroplasty in Early Osteoarthritis of the Knee with Intra-Articular Implantation of Autologous Activated Peripheral Blood Stem Cells versus Hyaluronic Acid: A Randomized Controlled Trial with Differential Effects of Growth Factor Addition. Stem Cells Int 2017; 2017:8925132. [PMID: 29056974 PMCID: PMC5625803 DOI: 10.1155/2017/8925132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
In this randomized controlled trial, in early osteoarthritis (OA) that failed conservative intervention, the need for total knee arthroplasty (TKA) and WOMAC scores were evaluated, following a combination of arthroscopic microdrilling mesenchymal cell stimulation (MCS) and repeated intra-articular (IA) autologous activated peripheral blood stem cells (AAPBSCs) with growth factor addition (GFA) and hyaluronic acid (HA) versus IA-HA alone. Leukapheresis-harvested AAPBSCs were administered as three weekly IA injections combined with HA and GFA (platelet-rich plasma [PRP] and granulocyte colony-stimulating factor [hG-CSF]) and MCS in group 1 and in group 2 but without hG-CSF while group 3 received IA-HA alone. Each group of 20 patients was evaluated at baseline and at 1, 6, and, 12 months. At 12 months, all patients in the AAPBSC groups were surgical intervention free compared to three patients needing TKA in group 3 (p < 0.033). Total WOMAC scores showed statistically significant improvements at 6 and 12 months for the AAPBSC groups versus controls. There were no notable adverse events. We have shown avoidance of TKA in the AAPBSC groups at 12 months and potent, early, and sustained symptom alleviation through GFA versus HA alone. Differential effects of hG-CSF were noted with an earlier onset of symptom alleviation throughout.
Collapse
Affiliation(s)
- Thana Turajane
- Department of Orthopedic Surgery, Police General Hospital, Bangkok, Thailand
| | | | | | - Jongjate Aojanepong
- Department of Gynecology and Obstetrics, Police General Hospital, Bangkok, Thailand
| | | |
Collapse
|
12
|
Poonpet T, Saetan N, Tanavalee A, Wilairatana V, Yuktanandana P, Honsawek S. Association between leukocyte telomere length and angiogenic cytokines in knee osteoarthritis. Int J Rheum Dis 2017; 21:118-125. [DOI: 10.1111/1756-185x.12988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Thitiya Poonpet
- Department of Biochemistry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - Natthaphon Saetan
- Department of Biochemistry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - Aree Tanavalee
- Department of Orthopaedics; Faculty of Medicine; Vinai Parkpian Orthopaedic Research Center; King Chulalongkorn Memorial Hospital; Thai Red Cross Society; Chulalongkorn University; Bangkok Thailand
| | - Vajara Wilairatana
- Department of Orthopaedics; Faculty of Medicine; Vinai Parkpian Orthopaedic Research Center; King Chulalongkorn Memorial Hospital; Thai Red Cross Society; Chulalongkorn University; Bangkok Thailand
| | - Pongsak Yuktanandana
- Department of Orthopaedics; Faculty of Medicine; Vinai Parkpian Orthopaedic Research Center; King Chulalongkorn Memorial Hospital; Thai Red Cross Society; Chulalongkorn University; Bangkok Thailand
| | - Sittisak Honsawek
- Department of Biochemistry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Department of Orthopaedics; Faculty of Medicine; Vinai Parkpian Orthopaedic Research Center; King Chulalongkorn Memorial Hospital; Thai Red Cross Society; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
13
|
Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, Yu JK. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells Dev 2016; 25:1195-207. [PMID: 27353075 DOI: 10.1089/scd.2016.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Meng-Hong Yin
- Department of Sports Medicine, Dalian Medical University, Liaoning, China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hai-Jun Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Papadopoulos K, Wattanaarsakit P, Prasongchean W, Narain R. Gene therapies in clinical trials. POLYMERS AND NANOMATERIALS FOR GENE THERAPY 2016:231-256. [DOI: https:/doi.org/10.1016/b978-0-08-100520-0.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
15
|
Malhotra R, Kumar V, Garg B, Singh R, Jain V, Coshic P, Chatterjee K. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg 2015; 99:243-248. [PMID: 26193983 DOI: 10.1007/s12306-015-0378-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE Fracture union is a complex biological process, which depends upon several systemic and local factors. Disturbance of any of these factors may lead to nonunion of the fracture. These nonunions have a huge impact on quality of life as well as socioeconomical aspects. The platelets on activation release a number of growth factors and differentiation factors, which play important role in fracture healing. This study aimed to look for efficacy of platelet-rich plasma in the treatment of established fracture nonunions of long bones. METHODS A total of 94 patients with established nonunion of long bone (35 tibia, 30 femur, 11 humerus, 4 radius, 12 ulna, 2 with both radius and ulna) were included in this study. We injected 15-20 ml of autologous platelet-rich plasma (>2,000,000 platelets/μl) under image intensifier at each nonunion site. The fracture union was evaluated clinically and radiologically regularly at monthly interval till 4 months. RESULTS Eighty-two patients had their fracture united at the end of 4 months. Thirty-four patients showed bridging trabeculae on X-rays at the end of 2 months, while 41 patients showed bridging trabeculae at the end of third month. Twelve patients did not show any attempt of union at 4 months and were labeled as failure of treatment. There were no complications. CONCLUSION Platelet-rich plasma is a safe and effective treatment for the treatment of nonunions. More studies are needed to look into molecular mechanism of this fracture healing acceleration by platelet-rich plasma.
Collapse
Affiliation(s)
- R Malhotra
- Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - V Kumar
- Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - B Garg
- Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - R Singh
- Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - V Jain
- Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Coshic
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| | - K Chatterjee
- Department of Transfusion Medicine, AIIMS, New Delhi, India
| |
Collapse
|
16
|
High Tibial Osteotomy in Combination With Chondrogenesis After Stem Cell Therapy: A Histologic Report of 8 Cases. Arthroscopy 2015; 31:1909-20. [PMID: 26008951 DOI: 10.1016/j.arthro.2015.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/04/2015] [Accepted: 03/19/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To histologically evaluate the quality of articular cartilage regeneration from the medial compartment after arthroscopic subchondral drilling followed by postoperative intra-articular injections of autologous peripheral blood stem cells (PBSCs) and hyaluronic acid with concomitant medial open-wedge high tibial osteotomy (HTO) in patients with varus deformity of the knee joint. METHODS Eight patients with varus deformity of the knee joint underwent arthroscopic subchondral drilling of International Cartilage Repair Society (ICRS) grade 4 bone-on-bone lesions of the medial compartment with concomitant HTO. These patients were part of a larger pilot study in which 18 patients underwent the same procedure. PBSCs were harvested and cryopreserved preoperatively. At 1 week after surgery, 8 mL of PBSCs was mixed with 2 mL of hyaluronic acid and injected intra-articularly into the knee joint; this was repeated once a week for 5 consecutive weeks. Three additional intra-articular injections were administered weekly at intervals of 6, 12, and 18 months postoperatively. Informed consent was obtained at the time of hardware removal for opportunistic second-look arthroscopy and chondral biopsy. Biopsy specimens were stained with H&E, safranin O, and immunohistochemical staining for type I and II collagen. Specimens were graded using the 14 components of the ICRS Visual Assessment Scale II, and a total score was obtained. RESULTS Second-look arthroscopy showed satisfactory healing of the regenerated cartilage. Histologic analysis showed significant amounts of proteoglycan and type II collagen. The total ICRS Visual Assessment Scale II histologic scores comparing the regenerated articular cartilage (mean, 1,274) with normal articular cartilage (mean, 1,340) indicated that the repair cartilage score approached 95% of the normal articular cartilage score. There were no infections, delayed unions, or nonunions. CONCLUSIONS Chondrogenesis with stem cells in combination with medial open-wedge HTO for varus deformity correction of the knee joint regenerates cartilage that closely resembles the native articular cartilage. LEVEL OF EVIDENCE Level IV, therapeutic case series.
Collapse
|
17
|
PRP and articular cartilage: a clinical update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:542502. [PMID: 26075244 PMCID: PMC4436454 DOI: 10.1155/2015/542502] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.
Collapse
|