1
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Peroxisome proliferator-activated receptorα/γ agonist pioglitazone for rescuing relapsed or refractory neoplasias by unlocking phenotypic plasticity. Front Oncol 2024; 13:1289222. [PMID: 38273846 PMCID: PMC10808445 DOI: 10.3389/fonc.2023.1289222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
A series of seven clinical trials on relapsed or refractory (r/r) metastatic neoplasias followed the question: Are networks of ligand-receptor cross-talks that support tumor-specific cancer hallmarks, druggable with tumor tissue editing approaches therapeutically exploiting tumor plasticity? Differential recombinations of pioglitazone, a dual peroxisome-proliferator activated receptorα/γ (PPARα/γ) agonist, with transcriptional modulators, i.e., all-trans retinoic acid, interferon-α, or dexamethasone plus metronomic low-dose chemotherapy (MCT) or epigenetic modeling with azacitidine plus/minus cyclooxygenase-2 inhibition initiated tumor-specific reprogramming of cancer hallmarks, as exemplified by inflammation control in r/r melanoma, renal clear cell carcinoma (RCCC), Hodgkin's lymphoma (HL) and multisystem Langerhans cell histiocytosis (mLCH) or differentiation induction in non-promyelocytic acute myeloid leukemia (non-PML AML). Pioglitazone, integrated in differentially designed editing schedules, facilitated induction of tumor cell death as indicated by complete remission (CR) in r/r non-PML AML, continuous CR in r/r RCCC, mLCH, and in HL by addition of everolimus, or long-term disease control in melanoma by efficaciously controlling metastasis, post-therapy cancer repopulation and acquired cell-resistance and genetic/molecular-genetic tumor cell heterogeneity (M-CRAC). PPARα/γ agonists provided tumor-type agnostic biomodulatory efficacy across different histologic neoplasias. Tissue editing techniques disclose that wide-ranging functions of PPARα/γ agonists may be on-topic focused for differentially unlocking tumor phenotypes. Low-dose MCT facilitates targeted reprogramming of cancer hallmarks with transcriptional modulators, induction of tumor cell death, M-CRAC control and editing of non-oncogene addiction. Thus, pioglitazone, integrated in tumor tissue editing protocols, is an important biomodulatory drug for addressing urgent therapeutic problems, such as M-CRAC in relapsed or refractory tumor disease.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A, Heudobler D. Addressing Genetic Tumor Heterogeneity, Post-Therapy Metastatic Spread, Cancer Repopulation, and Development of Acquired Tumor Cell Resistance. Cancers (Basel) 2023; 16:180. [PMID: 38201607 PMCID: PMC10778239 DOI: 10.3390/cancers16010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The concept of post-therapy metastatic spread, cancer repopulation and acquired tumor cell resistance (M-CRAC) rationalizes tumor progression because of tumor cell heterogeneity arising from post-therapy genetic damage and subsequent tissue repair mechanisms. Therapeutic strategies designed to specifically address M-CRAC involve tissue editing approaches, such as low-dose metronomic chemotherapy and the use of transcriptional modulators with or without targeted therapies. Notably, tumor tissue editing holds the potential to treat patients, who are refractory to or relapsing (r/r) after conventional chemotherapy, which is usually based on administering a maximum tolerable dose of a cytostatic drugs. Clinical trials enrolling patients with r/r malignancies, e.g., non-small cell lung cancer, Hodgkin's lymphoma, Langerhans cell histiocytosis and acute myelocytic leukemia, indicate that tissue editing approaches could yield tangible clinical benefit. In contrast to conventional chemotherapy or state-of-the-art precision medicine, tissue editing employs a multi-pronged approach targeting important drivers of M-CRAC across various tumor entities, thereby, simultaneously engaging tumor cell differentiation, immunomodulation, and inflammation control. In this review, we highlight the M-CRAC concept as a major factor in resistance to conventional cancer therapies and discusses tissue editing as a potential treatment.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Mahantesh A, Ravikiran B, Jayashree N, Anup M. A Case of Malignant Pericardial Effusion, Complicated by COVID-19: Challenges and Successful Management in Rural India. ASIAN JOURNAL OF ONCOLOGY 2022. [DOI: 10.1055/s-0042-1750018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract
Background Malignant pericardial effusion (MPE) is a rare presentation in cancer, associated with high morbidity and mortality. Pericardial effusion may cause cardiac tamponade and sudden death without timely intervention. Management of MPE in rural setting during coronavirus disease 2019 (COVID-19) pandemic would require a multidisciplinary team in a center with expertise and could be a challenge in rural India with limited resources.
Methods Here we present a case of MPE of unknown origin in a 40-year-old woman, complicated by COVID-19 infection, which was successfully managed in a rural health setting in southern India.
Results She was subjected to prompt pericardiocentesis to relieve symptoms and dose-dense palliative chemotherapy followed by metronomic chemotherapy and pro-anakoinosis therapy during COVID-19 home isolation. She currently has no evidence of disease and is tolerating treatment well.
Conclusion Complex oncological emergencies like MPE of unknown origin can be managed in rural setting in India, with a slight modification of existing facility resulting in successful outcomes. This case of MPE in a 40-year-old lady is a glaring example of how the same can be achieved. Principle of pro-anakoinosis can be of value not only during pandemics and lockdowns but also otherwise, the feasibility of which has to be elucidated in larger studies.
Collapse
Affiliation(s)
- A.C. Mahantesh
- Department of Radiation Oncology, Hassan Institute of Medical Sciences, Hassan, Karnataka, India
| | - B. Ravikiran
- Department of Oncology, Hassan Institute of Medical Sciences, Hassan, Karnataka, India
| | - N.P. Jayashree
- Department of Radiation Oncology, Hassan Institute of Medical Sciences, Hassan, Karnataka, India
| | - M. Anup
- Department of Interventional Cardiology, Janapriya Hospital, Hassan, Karnataka, India
| |
Collapse
|
4
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Corsi F, Capradossi F, Pelliccia A, Briganti S, Bruni E, Traversa E, Torino F, Reichle A, Ghibelli L. Apoptosis as Driver of Therapy-Induced Cancer Repopulation and Acquired Cell-Resistance (CRAC): A Simple In Vitro Model of Phoenix Rising in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23031152. [PMID: 35163077 PMCID: PMC8834753 DOI: 10.3390/ijms23031152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Apoptotic cells stimulate compensatory proliferation through the caspase-3-cPLA-2-COX-2-PGE-2-STAT3 Phoenix Rising pathway as a healing process in normal tissues. Phoenix Rising is however usurped in cancer, potentially nullifying pro-apoptotic therapies. Cytotoxic therapies also promote cancer cell plasticity through epigenetic reprogramming, leading to epithelial-to-mesenchymal-transition (EMT), chemo-resistance and tumor progression. We explored the relationship between such scenarios, setting-up an innovative, straightforward one-pot in vitro model of therapy-induced prostate cancer repopulation. Cancer (castration-resistant PC3 and androgen-sensitive LNCaP), or normal (RWPE-1) prostate cells, are treated with etoposide and left recovering for 18 days. After a robust apoptotic phase, PC3 setup a coordinate tissue-like response, repopulating and acquiring EMT and chemo-resistance; repopulation occurs via Phoenix Rising, being dependent on high PGE-2 levels achieved through caspase-3-promoted signaling; epigenetic inhibitors interrupt Phoenix Rising after PGE-2, preventing repopulation. Instead, RWPE-1 repopulate via Phoenix Rising without reprogramming, EMT or chemo-resistance, indicating that only cancer cells require reprogramming to complete Phoenix Rising. Intriguingly, LNCaP stop Phoenix-Rising after PGE-2, failing repopulating, suggesting that the propensity to engage/complete Phoenix Rising may influence the outcome of pro-apoptotic therapies. Concluding, we established a reliable system where to study prostate cancer repopulation, showing that epigenetic reprogramming assists Phoenix Rising to promote post-therapy cancer repopulation and acquired cell-resistance (CRAC).
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.P.); (E.B.)
- Correspondence: (F.C.); (L.G.); Tel.: +39-06-7259-4095 (F.C.); Tel.: +39-06-7259-4218 (L.G.)
| | - Francesco Capradossi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.P.); (E.B.)
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Andrea Pelliccia
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.P.); (E.B.)
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Stefania Briganti
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Emanuele Bruni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.P.); (E.B.)
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, 93053 Regensburg, Germany;
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.P.); (E.B.)
- Correspondence: (F.C.); (L.G.); Tel.: +39-06-7259-4095 (F.C.); Tel.: +39-06-7259-4218 (L.G.)
| |
Collapse
|
6
|
Heudobler D, Schulz C, Fischer JR, Staib P, Wehler T, Südhoff T, Schichtl T, Wilke J, Hahn J, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Held S, Beckers K, Bouche G, Reichle A. A Randomized Phase II Trial Comparing the Efficacy and Safety of Pioglitazone, Clarithromycin and Metronomic Low-Dose Chemotherapy with Single-Agent Nivolumab Therapy in Patients with Advanced Non-small Cell Lung Cancer Treated in Second or Further Line (ModuLung). Front Pharmacol 2021; 12:599598. [PMID: 33796020 PMCID: PMC8007965 DOI: 10.3389/fphar.2021.599598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Most non-small cell lung cancers occur in elderly and frequently comorbid patients. Therefore, it is necessary to evaluate the efficacy of biomodulatory active therapy regimen, concertedly interfering with tumor-associated homeostatic pathways to achieve tumor control paralleled by modest toxicity profiles. Patients and Methods: The ModuLung trial is a national, multicentre, prospective, open-label, randomized phase II trial in patients with histologically confirmed stage IIIB/IV squamous (n = 11) and non-squamous non-small cell (n = 26) lung cancer who failed first-line platinum-based chemotherapy. Patients were randomly assigned on a 1:1 ratio to the biomodulatory or control group, treated with nivolumab. Patients randomized to the biomodulatory group received an all-oral therapy consisting of treosulfan 250 mg twice daily, pioglitazone 45 mg once daily, clarithromycin 250 mg twice daily, until disease progression or unacceptable toxicity. Results: The study had to be closed pre-maturely due to approval of immune checkpoint inhibitors (ICi) in first-line treatment. Thirty-seven patients, available for analysis, were treated in second to forth-line. Progression-free survival (PFS) was significantly inferior for biomodulation (N = 20) vs. nivolumab (N = 17) with a median PFS (95% confidence interval) of 1.4 (1.2-2.0) months vs. 1.6 (1.4-6.2), respectively; with a hazard ratio (95% confidence interval) of 1.908 [0.962; 3.788]; p = 0.0483. Objective response rate was 11.8% with nivolumab vs. 5% with biomodulation, median follow-up 8.25 months. The frequency of grade 3-5 treatment related adverse events was 29% with nivolumab and 10% with biomodulation. Overall survival (OS), the secondary endpoint, was comparable in both treatment arms; biomodulation with a median OS (95% confidence interval) of 9.4 (6.0-33.0) months vs. nivolumab 6.9 (4.6-24.0), respectively; hazard ratio (95% confidence interval) of 0.733 [0.334; 1.610]; p = 0.4368. Seventy-five percent of patients in the biomodulation arm received rescue therapy with checkpoint inhibitors. Conclusions: This trial shows that the biomodulatory therapy was inferior to nivolumab on PFS. However, the fact that OS was similar between groups gives rise to the hypothesis that the well-tolerable biomodulatory therapy may prime tumor tissues for efficacious checkpoint inhibitor therapy, even in very advanced treatment lines where poor response to ICi might be expected with increasing line of therapy.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Peter Staib
- Euregio Cancer Center Eschweiler, Eschweiler, Germany
| | - Thomas Wehler
- Department of Hematology, Oncology, Palliative Care, Pneumology, Evangelisches Krankenhaus Hamm, Hamm, Germany.,Lungenklinik Hemer, Hemer, Germany
| | - Thomas Südhoff
- Department of Hematology and Oncology, Klinikum Passau, Passau, Germany
| | - Thomas Schichtl
- Medizinisches Versorgungszentrum Weiden, Weiden in der Oberpfalz, Bavaria, Germany
| | | | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Heudobler D, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Gerner C, Pantziarka P, Ghibelli L, Reichle A. Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue-Going Beyond Apoptosis Induction. Front Oncol 2019; 9:1408. [PMID: 31921665 PMCID: PMC6934003 DOI: 10.3389/fonc.2019.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
The current approach to systemic therapy for metastatic cancer is aimed predominantly at inducing apoptosis of cancer cells by blocking tumor-promoting signaling pathways or by eradicating cell compartments within the tumor. In contrast, a systems view of therapy primarily considers the communication protocols that exist at multiple levels within the tumor complex, and the role of key regulators of such systems. Such regulators may have far-reaching influence on tumor response to therapy and therefore patient survival. This implies that neoplasia may be considered as a cell non-autonomous disease. The multi-scale activity ranges from intra-tumor cell compartments, to the tumor, to the tumor-harboring organ to the organism. In contrast to molecularly targeted therapies, a systems approach that identifies the complex communications networks driving tumor growth offers the prospect of disrupting or "normalizing" such aberrant communicative behaviors and therefore attenuating tumor growth. Communicative reprogramming, a treatment strategy referred to as anakoinosis, requires novel therapeutic instruments, so-called master modifiers to deliver concerted tumor growth-attenuating action. The diversity of biological outcomes following pro-anakoinotic tumor therapy, such as differentiation, trans-differentiation, control of tumor-associated inflammation, etc. demonstrates that long-term tumor control may occur in multiple forms, inducing even continuous complete remission. Accordingly, pro-anakoinotic therapies dramatically extend the repertoire for achieving tumor control and may activate apoptosis pathways for controlling resistant metastatic tumor disease and hematologic neoplasia.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Department Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Campana PT, Marletta A, Piovesan E, Francisco KJM, Neto FVR, Petrini L, Silva TR, Machado D, Basoli F, Oliveira ON, Licoccia S, Traversa E. Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia T. Campana
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Erick Piovesan
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Kelliton J. M. Francisco
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Francisco V. R. Neto
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Leandro Petrini
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Thiago R. Silva
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo, 03828-000, Brazil
| | - Danilo Machado
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Francesco Basoli
- Department of Engineering, University of Rome “Campus Bio-Medico di Roma”, Alvaro del Portillo St., 21, Rome 00128, Italy
| | - Osvaldo N. Oliveira
- Sao Carlos Institute of Physics, University of São Paulo (USP), CP 369, 13560-970, Sao Carlos, SP, Brazil
| | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica St. Rome 00133, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, Sichuan, P. R. China
| |
Collapse
|
9
|
Pantziarka P, Ghibelli L, Reichle A. A Computational Model of Tumor Growth and Anakoinosis. Front Pharmacol 2019; 10:287. [PMID: 30971926 PMCID: PMC6444062 DOI: 10.3389/fphar.2019.00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
Anakoinosis is a new cancer treatment paradigm that posits a key role for communicative reprogramming within tumor systems. To date no mathematical or computational models of anakoinosis have been developed. Here we outline the NEATG_A system, a first computational model of communicative reprogramming. The model recapitulates key features of real tumor systems and responses to both traditional cytotoxic treatments and biomodulatory/anakoinotic treatments. Results are presented and discussed, particularly with respect to the implications for future cancer treatment protocols.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom.,Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Stoppacciaro A, Di Vito S, Filetici P. Epigenetic Factors and Mitochondrial Biology in Yeast: A New Paradigm for the Study of Cancer Metabolism? Front Pharmacol 2018; 9:1349. [PMID: 30524288 PMCID: PMC6258771 DOI: 10.3389/fphar.2018.01349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Bidirectional cross-talk between nuclear and mitochondrial DNA is fundamental for cell homeostasis. Epigenetic mechanisms regulate the inter-organelle communication between nucleus and mitochondria. Recent research highlights not only the retrograde activation of nuclear gene transcription in case of mitochondria dysfunction, but also the role of post-translational modifications of mitochondrial proteins in respiratory metabolism. Here we discuss some aspects and novel findings in Saccharomyces cerevisiae. In yeast, KAT-Gcn5 and DUB-Ubp8 have a role in respiration and are localized, as single proteins, into mitochondria. These findings, beside the canonical and widely known nuclear activity of SAGA complex in chromatin regulation, provide novel clues on promising aspects linking evolutionary conserved epigenetic factors to the re-programmed metabolism of cancer cells.
Collapse
Affiliation(s)
- Antonella Stoppacciaro
- Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, Sapienza University of Rome, Rome, Italy
| | - Serena Di Vito
- Institute of Molecular Biology and Pathology, CNR, Sapienza University of Rome, Rome, Italy
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology, CNR, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Heudobler D, Klobuch S, Thomas S, Hahn J, Herr W, Reichle A. Cutaneous Leukemic Infiltrates Successfully Treated With Biomodulatory Therapy in a Rare Case of Therapy-Related High Risk MDS/AML. Front Pharmacol 2018; 9:1279. [PMID: 30483125 PMCID: PMC6243099 DOI: 10.3389/fphar.2018.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022] Open
Abstract
Cutaneous manifestations in hematologic malignancies, especially in leukemia, are not common and may be very variable. Here we report a very unusual case of a patient (female, 70 years old) who was admitted to the hospital in 2016 because of skin lesions on the face, the trunk of the body and the extremities. She had a history of breast cancer in the year 2004 (pT1b, pN0, cM0, L0, V0, R0) which had been resected and treated with adjuvant radiation and chemotherapy (cyclophosphamide, methotrexate, 5-fluorouracile) as well as psoriasis treated with methotrexate and cyclosporine. Because of mild cytopenia a bone marrow aspirate/biopsy was performed showing myelodysplastic syndrome (MDS) with multilineage dysplasia. Cytogenetic review revealed a complex aberrant karyotype denoting adverse outcome. Simultaneously, a skin biopsy could confirm leukemic skin infiltration. Consequently, a therapy with azacitidine was started. After the first cycle the patient developed severe pancytopenia with a percentage of 13% peripheral blasts (previously 0–2%) as well as fever without evidence for infection which was interpreted as progressive disease. Therefore, the therapeutic regimen was changed to a biomodulatory therapy consisting of low-dose azacitidine 75 mg/day (given sc d1-7 of 28), pioglitazone 45 mg/day per os, and all-trans-retinoic acid (ATRA) 45 mg/m2/day per os. After cycle 1 of this combined biomodulatory therapy the patient showed hematologic recovery; besides a mild anemia (hemoglobin 11.1 g/dl) she developed a normal blood count. Moreover, the cutaneous leukemic infiltrates which had been unaffected by the azacitidine ameliorated tremendously after 2 cycles resulting in a complete remission of the skin lesions after cycle 6. In conclusion, we report a very unusual case with cutaneous infiltrates being the first clinical manifestation of hematologic disease, preceding the development of acute myeloid leukemia. While azacitidine alone was ineffective, a combined biomodulatory approach resulted in a complete remission of the cutaneous manifestation.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Hahn
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Bruni E, Reichle A, Scimeca M, Bonanno E, Ghibelli L. Lowering Etoposide Doses Shifts Cell Demise From Caspase-Dependent to Differentiation and Caspase-3-Independent Apoptosis via DNA Damage Response, Inducing AML Culture Extinction. Front Pharmacol 2018; 9:1307. [PMID: 30483138 PMCID: PMC6243040 DOI: 10.3389/fphar.2018.01307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic chemotherapy, still the most widely adopted anticancer treatment, aims at eliminating cancer cells inducing apoptosis with DNA damaging agents, exploiting the differential replication rate of cancer vs. normal cells; efficiency is evaluated in terms of extent of induced apoptosis, which depends on the individual cell sensitivity to a given drug, and on the dose. In this in vitro study, we report that the concentration of etoposide, a topoisomerase II poison widely used in clinics, determines both the kinetics of cell death, and the type of apoptosis induced. We observed that on a set of myeloid leukemia cell lines, etoposide at high (50 uM) dose promoted a rapid caspase-3-mediated apoptosis, whereas at low (0.5 uM) dose, it induced morphological and functional granulocytic differentiation and caspase-2-dependent, but caspase-3-independent, cell death, displaying features consistent with apoptosis. Both differentiation and caspase-2- (but not 3)-mediated apoptosis were contrasted by caffeine, a well-known inhibitor of the cellular DNA damage response (DDR), which maintained cell viability and cycling, indicating that the effects of low etoposide dose are not the immediate consequence of damage, but the result of a signaling pathway. DDR may be thus the mediator responsible for translating a mere dosage-effect into different signal transduction pathways, highlighting a strategic action in regulating timing and mode of cell death according to the severity of induced damage. The evidence of different molecular pathways induced by high vs. low drug doses may possibly contribute to explain the different effects of cytotoxic vs. metronomic therapy, the latter achieving durable clinical responses by treating cancer patients with stable, low doses of otherwise canonical cytotoxic drugs; intriguingly caspase-3, a major promoter of wounded tissue regeneration, is also a key factor of post-therapy cancer repopulation. All this suggests that cancer control in response to cytotoxic drugs arises from complex reprogramming mechanisms in tumor tissue, recently described as anakoinosis.
Collapse
Affiliation(s)
- Emanuele Bruni
- Department of Biology, University of Rome "Tor Vergata,", Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Haematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Diagnostica Medica and Villa dei Platani, Avellino, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome "Tor Vergata,", Rome, Italy
| |
Collapse
|
14
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
15
|
Schelker RC, Herr W, Reichle A, Vogelhuber M. Low-dose trofosfamide plus rituximab is an effective and safe treatment for diffuse large B-cell lymphoma of the elderly: a single center experience. BMC Cancer 2018; 18:1000. [PMID: 30340554 PMCID: PMC6195694 DOI: 10.1186/s12885-018-4885-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/01/2018] [Indexed: 02/03/2023] Open
Abstract
Background Rituximab plus combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) is broadly accepted as standard for the treatment of diffuse large B-cell lymphoma (DLBCL). Nevertheless, there is sparsely data concerning the management of elderly patients. Methods We performed a retrospective study of treatment with rituximab and low-dose trofosfamide in elderly patients (≥ 75 years) with DLBCL who were not suitable for R-CHOP or R-CHOP-like regimens or who did not consent to aggressive treatment. The choice regarding the qualification for R-CHOP or R-CHOP-like regimen was left to the estimation of the treating physicians. Results Eleven patients with a median age of 83 years (range, 75–90 years) were included. The age-adjusted international prognostic index was low risk in one patient, low-intermediate in four patients, high-intermediate in three patients, and high risk in 3 patients. All patients were evaluable for response. Five patients (45%) achieved a complete response, three (27%) a partial response, one (9%) stable disease, and two (18%) progressive disease. The estimated 1-yr overall survival was 54.5%, and the estimated 1-yr progression-free survival 45.5%, however, three patients (27%) were alive without evidence of disease at 16–20 months from start of treatment. Main toxicity was leukopenia (36% grade III or IV), whereas grade III/IV non-hematological adverse events did not occur. Conclusions Due to its potency and low toxicity, trofosfamide/rituximab might represent an alternative therapy for DLBCL of elderly patients not suitable for R-CHOP. This observation, however, should be confirmed in a larger patient population within a prospective clinical trial.
Collapse
Affiliation(s)
- Roland Christian Schelker
- Department of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology & Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
16
|
Caputo F, Giovanetti A, Corsi F, Maresca V, Briganti S, Licoccia S, Traversa E, Ghibelli L. Cerium Oxide Nanoparticles Re-establish Cell Integrity Checkpoints and Apoptosis Competence in Irradiated HaCat Cells via Novel Redox-Independent Activity. Front Pharmacol 2018; 9:1183. [PMID: 30459604 PMCID: PMC6232693 DOI: 10.3389/fphar.2018.01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) are potent radical scavengers protecting cells from oxidative insults, including ionizing radiation. Here we show that CNPs prevent X-ray-induced oxidative imbalance reducing DNA breaks on HaCat keratinocytes, nearly abating mutagenesis. At the same time, and in spite of the reduced damage, CNPs strengthen radiation-induced cell cycle arrest and apoptosis outcome, dropping colony formation; notably, CNPs do not possess any intrinsic toxicity toward non-irradiated HaCat, indicating that they act on damaged cells. Thus CNPs, while exerting their antioxidant action, also reinforce the stringency of damage-induced cell integrity checkpoints, promoting elimination of the “tolerant” cells, being in fact radio-sensitizers. These two contrasting pathways are mediated by different activities of CNPs: indeed Sm-doped CNPs, which lack the Ce3+/Ce4+ redox switch and the correlated antioxidant action, fail to decrease radiation-induced superoxide formation, as expected, but surprisingly maintain the radio-sensitizing ability and the dramatic decrease of mutagenesis. The latter is thus attributable to elimination of damaged cells rather than decreased oxidative damage. This highlights a novel redox-independent activity of CNPs, allowing selectively eliminating heavily damaged cells through non-toxic mechanisms, rather reactivating endogenous anticancer pathways in transformed cells.
Collapse
Affiliation(s)
- Fanny Caputo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Lina Ghibelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Nicolas A, Carré M, Pasquier E. Metronomics: Intrinsic Anakoinosis Modulator? Front Pharmacol 2018; 9:689. [PMID: 29988614 PMCID: PMC6026805 DOI: 10.3389/fphar.2018.00689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/07/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- André Nicolas
- Service d'Hématologie et Oncologie Pédiatrique, Hôpital pour Enfants de La Timone, AP-HM, Marseille, France
| | - Manon Carré
- Aix-Marseille Univ., Centre National de la Recherche Scientifique, INSERM, Institut Paoli Calmettes, CRCM, Marseille, France
| | - Eddy Pasquier
- Aix-Marseille Univ., Centre National de la Recherche Scientifique, INSERM, Institut Paoli Calmettes, CRCM, Marseille, France
| |
Collapse
|
18
|
Mayer RL, Schwarzmeier JD, Gerner MC, Bileck A, Mader JC, Meier-Menches SM, Gerner SM, Schmetterer KG, Pukrop T, Reichle A, Slany A, Gerner C. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol Cell Proteomics 2017; 17:290-303. [PMID: 29196338 DOI: 10.1074/mcp.ra117.000425] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
B cell chronic lymphocytic leukemia (B-CLL), the most common type of leukemia in adults, is still essentially incurable despite the development of novel therapeutic strategies. This reflects the incomplete understanding of the pathophysiology of this disease. A comprehensive proteome analysis of primary human B-CLL cells and B cells from younger as well as elderly healthy donors was performed. For comparison, the chronic B cell leukemia cell line JVM-13 was also included. A principal component analysis comprising 6,945 proteins separated these four groups, placing B cells of aged-matched controls between those of young donors and B-CLL patients, while identifying JVM-13 as poorly related cells. Mass spectrometric proteomics data have been made fully accessible via ProteomeXchange with identifier PXD006570-PXD006572, PXD006576, PXD006578, and PXD006589-PXD006591. Remarkably, B cells from aged controls displayed significant regulation of proteins related to stress management in mitochondria and ROS stress such as DLAT, FIS1, and NDUFAB1, and DNA repair, including RAD9A, MGMT, and XPA. ROS levels were indeed found significantly increased in B cells but not in T cells or monocytes from aged individuals. These alterations may be relevant for tumorigenesis and were observed similarly in B-CLL cells. In B-CLL cells, some remarkable unique features like the loss of tumor suppressor molecules PNN and JARID2, the stress-related serotonin transporter SLC6A4, and high expression of ZNF207, CCDC88A, PIGR and ID3, otherwise associated with stem cell phenotype, were determined. Alterations of metabolic enzymes were another outstanding feature in comparison to normal B cells, indicating increased beta-oxidation of fatty acids and increased consumption of glutamine. Targeted metabolomics assays corroborated these results. The present findings identify a potential proteome signature for immune senescence in addition to previously unrecognized features of B-CLL cells and suggest that aging may be accompanied by cellular reprogramming functionally relevant for predisposing B cells to transform to B-CLL cells.
Collapse
Affiliation(s)
- Rupert L Mayer
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Josef D Schwarzmeier
- §Karl Landsteiner Institute for Bioanalytical Oncology, Karl Landsteiner Society, Vienna, Austria
| | - Marlene C Gerner
- ¶Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Bileck
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Johanna C Mader
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Samuel M Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Tobias Pukrop
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, .,**Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Communicative reprogramming non-curative hepatocellular carcinoma with low-dose metronomic chemotherapy, COX-2 inhibitor and PPAR-gamma agonist: a phase II trial. Med Oncol 2017; 34:192. [PMID: 29098441 PMCID: PMC5668342 DOI: 10.1007/s12032-017-1040-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
Systemic therapy for advanced hepatocellular carcinoma (HCC) is still challenging. A biomodulatory therapy approach targeting the communicative infrastructure of HCC, including metronomic low-dose chemotherapy with capecitabine, pioglitazone and rofecoxib, has been evaluated in patients with non-curative HCC. Altogether 38 patients were evaluable in this one-arm, multicenter phase II trial. The primary endpoint, median progression-free survival was 2.7 months (95% CI: 1.6-3.79) for all evaluable patients and 8.4 months (95% CI: 0-18.13) for patients ≥ 6 weeks on protocol. Median overall survival (OS) was 6.7 months (95% CI: 4.08-9.31) and 9.4 months (95% CI: 4.82-13.97), respectively. Most common adverse events were edemas grade 3, which were commonly related to the advanced stage, with 66% of the patients suffering from liver cirrhosis. Exploratory data analyses showed significant impact of ECOG performance status grade 0 versus 1 and CLIP score 0/1 versus > 1 on OS, 9.8 months (95% CI: 4.24-15.35) versus 2.7 months (95% CI: 1.03-4.36; P = 0.002), and 9.8 months (95% CI: 3.23-16.37) versus 4.4 months (95% CI: 3.14-5.66; P = 0.009), respectively. Preceding tumor surgery had significant beneficial impact on survival, as well as maximal tumor diameter of < 5 cm. The correlation of C-reactive protein decrease with significantly improved OS underlines the close link between inflammation and tumor control. Biomodulatory therapy in advanced HCC may be a low toxic, efficacious treatment and principally demonstrates that such approaches should be followed further for treatment of advanced HCC.
Collapse
|
20
|
De Nicola M, Bruni E, Traversa E, Ghibelli L. Slow release of etoposide from dextran conjugation shifts etoposide activity from cytotoxicity to differentiation: A promising tool for dosage control in anticancer metronomic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2005-2014. [PMID: 28535989 DOI: 10.1016/j.nano.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
Drug conjugation, improving drug stability, solubility and body permanence, allows achieving impressive results in tumor control. Here, we show that conjugation may provide a straightforward method to administer drugs by the emerging anticancer metronomic approach, presently consisting of low, repeated doses of cytotoxic drugs used in traditional chemotherapy, thus reducing toxicity without reducing efficiency; however, low dose maintenance in tumor sites is difficult. We show that conjugating the antitumor drug etoposide to dextran via pH-sensitive bond produces slow releasing, apoptosis-proficient conjugates rapidly internalized into acidic lysosomes; importantly, release of active etoposide requires cell internalization and acidic pH. Conjugation, without impairing etoposide-induced complete elimination of tumor cells, shifted the mode of apoptosis from cytotoxicity- to differentiation-related; interestingly, high conjugate doses acted as low doses of free etoposide, thus mimicking the effect of metronomic therapy. This indicates slow release as a promising novel strategy for stabilizing low drug levels in metronomic regimens.
Collapse
Affiliation(s)
- Milena De Nicola
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy; Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma, Italy.
| | - Emanuele Bruni
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy.
| | - Enrico Traversa
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma, Italy; International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy.
| |
Collapse
|
21
|
Muqaku B, Eisinger M, Meier SM, Tahir A, Pukrop T, Haferkamp S, Slany A, Reichle A, Gerner C. Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma. Mol Cell Proteomics 2016; 16:86-99. [PMID: 27879288 DOI: 10.1074/mcp.m116.063313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
Pathophysiologies of cancer-associated syndromes such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA, and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44, and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alter levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia.
Collapse
Affiliation(s)
- Besnik Muqaku
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin Eisinger
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ammar Tahir
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tobias Pukrop
- §Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- §Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- ¶Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria;
| |
Collapse
|
22
|
Hutter C, Minkov M. Insights into the pathogenesis of Langerhans cell histiocytosis: the development of targeted therapies. Immunotargets Ther 2016; 5:81-91. [PMID: 27785447 PMCID: PMC5066850 DOI: 10.2147/itt.s91058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
More than a century after its first description, Langerhans cell histiocytosis (LCH) still remains an intriguing disease. Considerable progress in understanding its biology has been achieved recently. Description of the V600E BRAF mutation in samples of LCH tissue in 2010 was followed by description of additional mutations, all leading to constitutive ERK activation. Current experimental data suggest that LCH is a myeloid neoplasia with inflammatory properties, yet the exact pathophysiology remains poorly understood. Disease management paradigms have changed over time, closely reflecting the evolving view of the nature of the disease. The international Histiocyte Society have conducted three prospective clinical studies on multisystem LCH since the early 1990s. The standard frontline therapy for patients with multisystem LCH based on the cumulative knowledge of those trials consists of 6–12 weeks of initial therapy (daily oral steroids and weekly vinblastine injections), followed by pulses of prednisolone/vinblastine every 3 weeks, for a total treatment duration of 12 months. A currently ongoing study (LCH-IV) with a complex design (five interventional and two observational strata) targets further reduction of mortality and morbidity by tailoring treatment intensity depending on expected risk, as well as by exploring treatment regimens for special locations. Current knowledge on LCH pathobiology opens opportunities for improvement in the patient outcome. The activating BRAF and MAP2K1 mutations collectively accounting for about 75% of the LCH population as well as the resulting constitutive activation of downstream ERK offer an opportunity for targeted treatment. Related issues (eg, finding most effective and less toxic drugs or combinations, appropriate dosage, and optimal treatment duration) must be addressed in controlled prospective trials. Additional mechanisms, such as the interactions of the mutated dendritic cell clone with other inflammatory cells and key cytokines and chemokines, still remain attractive targets for therapeutic intervention, particularly in patients with localized, less aggressive disease.
Collapse
Affiliation(s)
- Caroline Hutter
- International LCH Study Reference Center, Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, University Clinic of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Milen Minkov
- International LCH Study Reference Center, Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, University Clinic of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Department of Pediatrics, Adolescent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria
| |
Collapse
|
23
|
Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology--patient and health systems opportunities. Nat Rev Clin Oncol 2015; 12:732-42. [PMID: 26483297 DOI: 10.1038/nrclinonc.2015.169] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In most countries, healthcare service budgets are not likely to support the current explosion in the cost of new oncology drugs. Repurposing the large arsenal of approved, non-anticancer drugs is an attractive strategy to offer more-effective options to patients with cancer, and has the substantial advantages of cheaper, faster and safer preclinical and clinical validation protocols. The potential benefits are so relevant that funding of academically and/or independently driven preclinical and clinical research programmes should be considered at both national and international levels. To date, successes in oncology drug repurposing have been limited, despite strong evidence supporting the use of many different drugs. A lack of financial incentives for drug developers and limited drug development experience within the non-profit sector are key reasons for this lack of success. We discuss these issues and offer solutions to finally seize this opportunity in the interest of patients and societies, globally.
Collapse
Affiliation(s)
- Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Vikas P Sukhatme
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gauthier Bouche
- Anticancer Fund, 1853 Strombeek-Bever, Brussels 1853, Belgium
| |
Collapse
|
24
|
Hart C, Vogelhuber M, Hafner C, Landthaler M, Berneburg M, Haferkamp S, Herr W, Reichle A. Biomodulatory metronomic therapy in stage IV melanoma is well-tolerated and may induce prolonged progression-free survival, a phase I trial. J Eur Acad Dermatol Venereol 2015; 30:e119-e121. [PMID: 26417987 PMCID: PMC5108438 DOI: 10.1111/jdv.13391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- C Hart
- Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - M Vogelhuber
- Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - C Hafner
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - M Landthaler
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - M Berneburg
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - S Haferkamp
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - W Herr
- Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - A Reichle
- Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany.
| |
Collapse
|