1
|
Singer A, Trigo F, Vinel L, Gruere O, Llano I, Oheim M. A first morphological and electrophysiological characterization of Fañanas cells of the mouse cerebellum. J Physiol 2025; 603:855-871. [PMID: 39869051 PMCID: PMC11826065 DOI: 10.1113/jp285949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents. We identified FCs of the molecular layer in cerebellar slices by their stubby process and small cell bodies. Despite their more compact shape compared to Bergmann glia (BGs), FCs showed similar membrane resistances and basal currents, suggesting that these passive currents are partly a result of electrical coupling between neighbouring glia. Dye filling and pharmacological experiments confirmed both homo- and heterotypic gap-junction coupling among FCs and BGs. Parallel-fibre stimulation evoked TTX-sensitive slow inward currents in FCs that were partially blocked by NBQX but not APV. Occasionally, we observed superimposed fast (milliseconds) current transients. Near-UV flash photolysis of MNI-caged glutamate revealed rapid desensitization of these AMPA-receptor mediated currents, which fully recovered only for stimulation intervals >500 ms. We mapped the highest current densities in proximal processes. We conclude that FCs respond with fast AMPA currents to local glutamate release and they integrate ambient glutamate rises to a slow inward current. Interestingly, we found FCs to prevail throughout adulthood at stable but different densities among cerebellar lobules, with the highest cell densities in lobules I-II and X. Our results strongly suggest that FCs are not just displaced BGs, and that they may have lobule-specific functions - both locally and at the circuit level, yet to be uncovered. KEY POINTS: Using whole-cell recordings and near-UV laser photolyisis of caged glutamate, we provide a first characterization of cells of Fañanas (FCs) in mouse cerebellar slices. FCs are present from postnatal day 5 onward throughout adulthood and have a lobule- dependent density. Parallel-fibre stimulation generates biphasic, predominantly AMPA-mediated currents in FCs. Currents induced in FCs by parallel fibre stimulation are not NMDA receptor-dependent and are enhanced upon glutamate-transporter block with TBOA. Local near-UV glutamate uncaging indicates that FCs can detect fast glutamatergic inputs on the millisecond-time scale. FCs functionally integrate into the glial syncytium.
Collapse
Affiliation(s)
- A. Singer
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - F. Trigo
- Departamento de Neurofisiologia Celular y MolecularInstituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay
| | - L. Vinel
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - O. Gruere
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - I. Llano
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - Martin Oheim
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| |
Collapse
|
2
|
Marullo C, Croci L, Giupponi I, Rivoletti C, Zuffetti S, Bettegazzi B, Cremona O, Giunti P, Ambrosi A, Casoni F, Consalez GG, Codazzi F. Altered Ca2+ responses and antioxidant properties in Friedreich's ataxia-like cerebellar astrocytes. J Cell Sci 2025; 138:jcs263446. [PMID: 39648860 PMCID: PMC11828468 DOI: 10.1242/jcs.263446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder characterized by severe neurological signs, affecting the peripheral and central nervous system, caused by reduced frataxin protein (FXN) levels. Although several studies have highlighted cellular dysfunctions in neurons, there is limited information on the effects of FXN depletion in astrocytes and on the potential non-cell autonomous mechanisms affecting neurons in FRDA. In this study, we generated a model of FRDA cerebellar astrocytes to unveil phenotypic alterations that might contribute to cerebellar atrophy. We treated primary cerebellar astrocytes with an RNA interference-based approach, to achieve a reduction of FXN comparable to that observed in individuals with FRDA. These FRDA-like astrocytes display some typical features of the disease, such as an increase of oxidative stress and a depletion of glutathione content. Moreover, FRDA-like astrocytes exhibit decreased Ca2+ responses to purinergic stimuli. Our findings shed light on cellular changes caused by FXN downregulation in cerebellar astrocytes, likely impairing their complex interaction with neurons. The potentially impaired ability to provide neuronal cells with glutathione or to release neuromodulators in a Ca2+-dependent manner could affect neuronal function, contributing to neurodegeneration.
Collapse
Affiliation(s)
- Chiara Marullo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Iris Giupponi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Rivoletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sofia Zuffetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ottavio Cremona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Filippo Casoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Gian Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Franca Codazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells 2022; 11:cells11121902. [PMID: 35741031 PMCID: PMC9220858 DOI: 10.3390/cells11121902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although different regions of the brain are dedicated to specific functions, the intra- and inter-regional heterogeneity of astrocytes and microglia in these regions has not yet been fully understood. Recently, an advancement in various technologies, such as single-cell RNA sequencing, has allowed for the discovery of astrocytes and microglia with distinct molecular fingerprints and varying functions in the brain. In addition, the regional heterogeneity of astrocytes and microglia exhibits different functions in several situations, such as aging and neurodegenerative diseases. Therefore, investigating the region-specific astrocytes and microglia is important in understanding the overall function of the brain. In this review, we summarize up-to-date research on various intra- and inter-regional heterogeneities of astrocytes and microglia, and provide information on how they can be applied to aging and neurodegenerative diseases.
Collapse
|
6
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
8
|
The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen. J Neurosci 2019; 38:9338-9345. [PMID: 30381425 DOI: 10.1523/jneurosci.1662-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the role of SHH and its signaling pathway members in these cases.
Collapse
|
9
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
10
|
Cunningham C, Dunne A, Lopez-Rodriguez AB. Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegeneration and Innate Immunity. Neuroscientist 2018; 25:455-474. [PMID: 30451065 DOI: 10.1177/1073858418809941] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astrocytes are the most numerous cell type in the brain and perform several essential functions in supporting neuronal metabolism and actively participating in neural circuit and behavioral function. They also have essential roles as innate immune cells in responding to local neuropathology, and the manner in which they respond to brain injury and degeneration is the subject of increasing attention in neuroscience. Although activated astrocytes have long been thought of as a relatively homogenous population, which alter their phenotype in a relatively stereotyped way upon central nervous system injury, the last decade has revealed substantial heterogeneity in the basal state and significant heterogeneity of phenotype during reactive astrocytosis. Thus, phenotypic diversity occurs at two distinct levels: that determined by regionality and development and that determined by temporally dynamic changes to the environment of astrocytes during pathology. These inflammatory and pathological states shape the phenotype of these cells, with different consequences for destruction or recovery of the local tissue, and thus elucidating these phenotypic changes has significant therapeutic implications. In this review, we will focus on the phenotypic heterogeneity of astrocytes in health and disease and their propensity to change that phenotype upon subsequent stimuli.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland.,School of Medicine, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
11
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
12
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
13
|
Helleringer R, Chever O, Daniel H, Galante M. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca 2+ Rises Mainly Mediated by K + and ATP Increases in the Extracellular Space. Front Cell Neurosci 2017; 11:349. [PMID: 29163059 PMCID: PMC5675856 DOI: 10.3389/fncel.2017.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.
Collapse
Affiliation(s)
- Romain Helleringer
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - Hervé Daniel
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| |
Collapse
|
14
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
15
|
Hendriksen RGF, Schipper S, Hoogland G, Schijns OEMG, Dings JTA, Aalbers MW, Vles JSH. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy. Front Cell Neurosci 2016; 10:174. [PMID: 27458343 PMCID: PMC4937016 DOI: 10.3389/fncel.2016.00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). METHOD Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. RESULTS Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. CONCLUSION Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated in human TLE, but not in AK rats, possibly indicating a compensatory mechanism in the chronic epileptic human brain.
Collapse
Affiliation(s)
- Ruben G F Hendriksen
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Sandra Schipper
- Department of Neurology, Maastricht University Medical CentreMaastricht, Netherlands; School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Govert Hoogland
- School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CentreMaastricht, Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Jim T A Dings
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre Groningen, Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| |
Collapse
|
16
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
17
|
Phuong TTT, Yarishkin O, Križaj D. Subcellular propagation of calcium waves in Müller glia does not require autocrine/paracrine purinergic signaling. Channels (Austin) 2016; 10:421-427. [PMID: 27221769 DOI: 10.1080/19336950.2016.1193276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.
Collapse
Affiliation(s)
- Tam T T Phuong
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA
| | - Oleg Yarishkin
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA
| | - David Križaj
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA.,b Department of Neurobiology & Anatomy , University of Utah School of Medicine , Salt Lake City , UT , USA.,c Department of Bioengineering , University of Utah , Salt Lake City , UT USA
| |
Collapse
|
18
|
Choe KY, Prager-Khoutorsky M, Farmer WT, Murai KK, Bourque CW. Effects of Salt Loading on the Morphology of Astrocytes in the Ventral Glia Limitans of the Rat Supraoptic Nucleus. J Neuroendocrinol 2016; 28. [PMID: 26813227 DOI: 10.1111/jne.12370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/28/2022]
Abstract
In the ventral glial limitans (VGL) of the supraoptic nucleus (SON) of the rat, a unique astrocyte type is found with an ability to undergo striking morphological plasticity in response to a wide range of physiological stimulations such as chronic hypernatraemia. This includes a thinning of the VGL, which contains the somata and proximal processes of these astrocytes, as well as an almost complete withdrawal of their vertically-oriented distal processes. Currently, there is little information available on the types of astrocytes that reside in the SON-VGL and which of these exhibit state-dependent structural plasticity. To address this, we enabled the visualisation of single SON-VGL glia using two novel cell labelling techniques with fluorescence microscopy. First, we used an inducible genetic reporter mouse line that allowed the specific labelling of a low density of astrocytes expressing glutamate and aspartate transporter (GLAST)/excitatory amino acid transporter 1. This approach revealed a high degree of variability in the morphology of mouse SON-VGL astrocytes, in contrast to what has been reported for cortical astrocytes. Next, we used the DiOlistlic labelling approach to label single glial cells with DiI in the SON-VGL of rats. Astrocytes observed using this approach shared the morphological features of GLAST-expressing astrocytes in the mouse SON-VGL. Specific structural aspects of these cells were modified by chronic hypernatraemia achieved by 7-day salt loading. Notably, the average area of cells exhibiting protoplasmic features was significantly reduced in the horizontal plane, and the size of varicosities present on fibrous projections was significantly enlarged. These observations indicate that novel cell labelling methods can significantly advance our understanding of SON-VGL cells and reveal specific forms of morphological plasticity that can be driven by chronic hypernatraemia.
Collapse
Affiliation(s)
- K Y Choe
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | - M Prager-Khoutorsky
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | - W T Farmer
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | - K K Murai
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | - C W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| |
Collapse
|
19
|
Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV, Bally BP, Chen GG, Théroux JF, Peng J, Bourque CW, Charron F, Ernst C, Sjöström PJ, Murai KK. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 2016; 351:849-54. [PMID: 26912893 DOI: 10.1126/science.aab3103] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.
Collapse
Affiliation(s)
- W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Therése Abrahamsson
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Christopher Lui
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Cristian Zaelzer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Blandine Ponroy Bally
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Gary G Chen
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada
| | - Jean-Francois Théroux
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada
| | - Jimmy Peng
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada. Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Frédéric Charron
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada. Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Carl Ernst
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. Department of Human Genetics, McGill University, Montreal, Quebec, Canada. Douglas Hospital Research Institute, Verdun, Quebec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Myers KR, Liu G, Feng Y, Zheng JQ. Oligodendroglial defects during quakingviable cerebellar development. Dev Neurobiol 2015; 76:972-82. [PMID: 26645409 DOI: 10.1002/dneu.22369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022]
Abstract
The selective RNA-binding protein Quaking I (QKI) has previously been implicated in RNA localization and stabilization, alternative splicing, cell proliferation, and differentiation. The spontaneously-occurring quakingviable (qkv) mutant mouse exhibits a sharply attenuated level of QKI in myelin-producing cells, including oligodendrocytes (OL) because of the loss of an OL-specific promoter. The disruption of QKI in OLs results in severe hypomyelination of the central nervous system, but the underlying cellular mechanisms remain to be fully elucidated. In this study, we used the qkv mutant mouse as a model to study myelination defects in the cerebellum. We found that oligodendroglial development and myelination are adversely affected in the cerebellum of qkv mice. Specifically, we identified an increase in the total number of oligodendroglial precursor cells in qkv cerebella, a substantial portion of which migrated into the grey matter. Furthermore, these mislocalized oligodendroglial precursor cells retained their migratory morphology late into development. Interestingly, a number of these presumptive oligodendrocyte precursors were found at the Purkinje cell layer in qkv cerebella, resembling Bergman glia. These findings indicate that QKI is involved in multiple aspects of oligodendroglial development. QKI disruption can impact the cell fate of oligodendrocyte precursor cells, their migration and differentiation, and ultimately myelination in the cerebellum. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 972-982, 2016.
Collapse
Affiliation(s)
- Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Guanglu Liu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, 30322.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
21
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
22
|
De Zeeuw CI, Hoogland TM. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci 2015; 9:246. [PMID: 26190972 PMCID: PMC4488625 DOI: 10.3389/fncel.2015.00246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | - Tycho M Hoogland
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| |
Collapse
|
23
|
Álvarez MI, Rivas L, Lacruz C, Toledano A. Astroglial cell subtypes in the cerebella of normal adults, elderly adults, and patients with Alzheimer's disease: A histological and immunohistochemical comparison. Glia 2014; 63:287-312. [DOI: 10.1002/glia.22751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 08/27/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | - Luís Rivas
- Department of Ophthalmology; Hospital Ramón y Cajal; Madrid Spain
| | - César Lacruz
- Department of Pathology; Hospital General Universitario Gregorio Marañón; Madrid Spain
| | | |
Collapse
|
24
|
Gandolfi D, Pozzi P, Tognolina M, Chirico G, Mapelli J, D'Angelo E. The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons. Front Cell Neurosci 2014; 8:92. [PMID: 24782707 PMCID: PMC3995049 DOI: 10.3389/fncel.2014.00092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/12/2014] [Indexed: 11/26/2022] Open
Abstract
In order to investigate the spatiotemporal organization of neuronal activity in local microcircuits, techniques allowing the simultaneous recording from multiple single neurons are required. To this end, we implemented an advanced spatial-light modulator two-photon microscope (SLM-2PM). A critical issue for cerebellar theory is the organization of granular layer activity in the cerebellum, which has been predicted by single-cell recordings and computational models. With SLM-2PM, calcium signals could be recorded from different network elements in acute cerebellar slices including granule cells (GrCs), Purkinje cells (PCs) and molecular layer interneurons. By combining WCRs with SLM-2PM, the spike/calcium relationship in GrCs and PCs could be extrapolated toward the detection of single spikes. The SLM-2PM technique made it possible to monitor activity of over tens to hundreds neurons simultaneously. GrC activity depended on the number of spikes in the input mossy fiber bursts. PC and molecular layer interneuron activity paralleled that in the underlying GrC population revealing the spread of activity through the cerebellar cortical network. Moreover, circuit activity was increased by the GABA-A receptor blocker, gabazine, and reduced by the AMPA and NMDA receptor blockers, NBQX and APV. The SLM-2PM analysis of spatiotemporal patterns lent experimental support to the time-window and center-surround organizing principles of the granular layer.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Laboratory of Neurophysiology, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Laboratory of Experimental and Computational Neurophysiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Paolo Pozzi
- Laboratory of Biophysics and Biophotonics, Department of Physics, University of Milano-Bicocca Milano, Italy
| | - Marialuisa Tognolina
- Laboratory of Neurophysiology, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Giuseppe Chirico
- Laboratory of Biophysics and Biophotonics, Department of Physics, University of Milano-Bicocca Milano, Italy
| | - Jonathan Mapelli
- Laboratory of Experimental and Computational Neurophysiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy ; Laboratory of Neurophysiology, Brain Connectivity Center, C. Mondino National Neurological Institute, Fondazione IRCCS C. Mondino Pavia, Italy
| | - Egidio D'Angelo
- Laboratory of Neurophysiology, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Laboratory of Neurophysiology, Brain Connectivity Center, C. Mondino National Neurological Institute, Fondazione IRCCS C. Mondino Pavia, Italy
| |
Collapse
|
25
|
Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS. Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
27
|
Di Benedetto B, Rupprecht R. Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 2013; 11:171-85. [PMID: 23997752 PMCID: PMC3637671 DOI: 10.2174/1570159x11311020004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders are devastating mental illnesses with a high economic burden. The additional morbidity associated with social issues that arises along with the course of these diseases increases the need for a clear understanding of their etiopathogenesis to allow an implementation of novel pharmacological strategies. Yet a poor knowledge about interactions occurring at the glia-neuron interface in health and disease still hampers innovative discoveries, despite the fact that glia cells have been long described to actively participate in the regulation of brain circuits. The purpose of this review was to collect the scattered literature on the involvement of glia cells in neuropsychiatric disorders and to describe how also these cells besides neurons might be responsive to current pharmacological interventions. We hope thereby to offer alternative approaches for investigations that may open avenues to search for new potential targets for drug discovery.
Collapse
Affiliation(s)
- B Di Benedetto
- Max Planck Institute of Psychiatry, Munich, Germany ; Department of Psychiatry and Psychotherapy, Regensburg University, Germany
| | | |
Collapse
|
28
|
Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol 2013; 109:42-63. [PMID: 23981535 DOI: 10.1016/j.pneurobio.2013.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
Abstract
The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum.
Collapse
Affiliation(s)
- Annalisa Buffo
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello, 30, 10125 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Neuroscience Institute of Turin, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | | |
Collapse
|
29
|
Chaboub LS, Deneen B. Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 2012; 34:379-88. [PMID: 23147551 DOI: 10.1159/000343723] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Astrocytes are the most abundant cell type in the central nervous system, have diverse physiological roles in both health and disease, and exhibit phenotypic heterogeneity. In spite of the overwhelming evidence that astrocytes are a diverse population, there has been relatively little consideration of their molecular heterogeneity. In this review, we will summarize what is known about the heterogeneity of astrocytes and outline challenges that have limited studies understanding their molecular diversity. Approaches that have sought to overcome these limitations will be discussed, with an emphasis on recent progress in the field of developmental gliogenesis, which has revealed that positional identity during embryogenesis is an organizing feature of astrocyte diversity. These recent findings, coupled with emerging technologies that allow for direct isolation of astrocyte populations, have led us to propose that approaches rooted in astrocyte development may be the key to unlocking this immense, untapped diversity.
Collapse
Affiliation(s)
- Lesley S Chaboub
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Piper M, Harris L, Barry G, Heng YHE, Plachez C, Gronostajski RM, Richards LJ. Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum. J Comp Neurol 2012; 519:3532-48. [PMID: 21800304 DOI: 10.1002/cne.22721] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of the cerebellum involves the coordinated proliferation, differentiation, maturation, and integration of cells from multiple neuronal and glial lineages. In rodent models, much of this occurs in the early postnatal period. However, our understanding of the molecular mechanisms that regulate this phase of cerebellar development remains incomplete. Here, we address the role of the transcription factor nuclear factor one X (NFIX), in postnatal development of the cerebellum. NFIX is expressed by progenitor cells within the external granular layer and by cerebellar granule neurons within the internal granule layer. Using NFIX⁻/⁻ mice, we demonstrate that the development of cerebellar granule neurons and Purkinje cells within the postnatal cerebellum is delayed in the absence of this transcription factor. Furthermore, the differentiation of mature glia within the cerebellum, such as Bergmann glia, is also significantly delayed in the absence of NFIX. Collectively, the expression pattern of NFIX, coupled with the delays in the differentiation of multiple cell populations of the developing cerebellum in NFIX⁻/⁻ mice, suggest a central role for NFIX in the regulation of cerebellar development, highlighting the importance of this gene for the maturation of this key structure.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Heng C, Lefebvre O, Klein A, Edwards MM, Simon-Assmann P, Orend G, Bagnard D. Functional role of laminin α1 chain during cerebellum development. Cell Adh Migr 2012; 5:480-9. [PMID: 22274713 DOI: 10.4161/cam.5.6.19191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We had developed a conditional Laminin α 1 knockout-mouse model (Lama1(cko)) bypassing embryonic lethality of Lama1 deficient mice to study the role of this crucial laminin chain during late developmental phases and organogenesis. Here, we report a strong defect in the organization of the adult cerebellum of Lama1(cko) mice. Our study of the postnatal cerebellum of Lama1(cko) animals revealed a disrupted basement membrane correlated to an unexpected excessive proliferation of granule cell precursors in the external granular layer (EGL). This was counteracted by a massive cell death occurring between the postnatal day 7 (P7) and day 20 (P20) resulting in a net balance of less cells and a smaller cerebellum. Our data show that the absence of Lama1 has an impact on the Bergmann glia scaffold that aberrantly develops. This phenotype is presumably responsible for the observed misplacing of granule cells that may explain the overall perturbation of the layering of the cerebellum and an aberrant folia formation.
Collapse
|
32
|
Molnár T, Héja L, Emri Z, Simon A, Nyitrai G, Pál I, Kardos J. Activation of astroglial calcium signaling by endogenous metabolites succinate and gamma-hydroxybutyrate in the nucleus accumbens. FRONTIERS IN NEUROENERGETICS 2011; 3:7. [PMID: 22180742 PMCID: PMC3235779 DOI: 10.3389/fnene.2011.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/25/2011] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests that different energy metabolites play a role not only in neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters the citric acid cycle via SUC have been described in the brain reward area, the nucleus accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-responsive astrocytes that are activated in a neuron-independent way. In this study we show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested that Ca2+ was released from internal stores. Similarly to SUC, the GHB response was also characterized by an effective concentration of 50 μM. We observed that the number of ATP-responsive cells decreased with increasing concentration of either SUC or GHB. Moreover, the concentration dependence of the number of ATP-responsive cells were highly identical as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB, therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1 subunit in the presence and absence of the N-Methyl-d-Aspartate (NMDA) receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV), indicating action mechanisms independent of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that residues R99, H103, R252, and R281 of the binding crevice of the kidney SUC-responsive membrane receptor SUCNR1 (GPCR91) also predict interaction with GHB, further implying similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC and GHB may represent a link between brain energy states and Ca2+ signaling in astrocytic networks.
Collapse
Affiliation(s)
- Tünde Molnár
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Vig PJS, Hearst S, Shao Q, Lopez ME, Murphy HA, Safaya E. Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy. THE CEREBELLUM 2011; 10:254-66. [PMID: 21384195 DOI: 10.1007/s12311-011-0262-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Non-cell autonomous involvement of glial cells in the pathogenesis of polyglutamine diseases is gaining recognition in the ataxia field. We previously demonstrated that Purkinje cells (PCs) in polyglutamine disease spinocerebellar ataxia-1 (SCA1) contain cytoplasmic vacuoles rich in Bergmann glial protein S100B. The vacuolar formation in SCA1 PCs is accompanied with an abnormal morphology of dendritic spines. In addition, S100B messenger RNA (mRNA) expression levels are significantly high in the cerebella of asymptomatic SCA1 transgenic (Tg) mice and increase further with age when compared with the age-matched wild-type animals. This higher S100B mRNA expression positively correlates with an increase in the number of vacuoles. To further characterize the function of S100B in SCA1 pathology, we explored the effects of S100B protein on GFP-ataxin-1 (ATXN1) with expanded polyglutamines [82Q] in HEK stable cell line. Externally added S100B protein to these cells induced S100B-positive vacuoles similar to those seen in SCA1 PCs in vivo. Further, we found that both externally added and internally expressed S100B significantly reduced GFP-ATXN1[82Q] inclusion body formation. In contrast, the addition of S100B inhibitory peptide TRTK12 reversed S100B-mediated effects. Interestingly, in SCA1 Tg mice, PCs containing S100B vacuoles also showed the lack of nuclear inclusions, whereas PCs without vacuoles contained nuclear inclusions. Additionally, TRTK12 treatment reduced abnormal dendritic growth and morphology of PCs in cerebellar slice cultures prepared from SCA1 Tg mice. Moreover, intranasal administration of TRTK12 to SCA1 Tg mice reduced cerebellar S100B levels in the particulate fractions, and these mice displayed a significant improvement in their performance deficit on the Rotarod test. Taken together, our results suggest that glial S100B may augment degenerative changes in SCA1 PCs by modulating mutant ataxin-1 toxicity/solubility through an unknown signaling pathway.
Collapse
Affiliation(s)
- Parminder J S Vig
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Hertz L. Astrocytic energy metabolism and glutamate formation--relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 2011; 29:1319-29. [PMID: 21820830 DOI: 10.1016/j.mri.2011.04.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/18/2022]
Abstract
Glutamate plays a double role in (13)C-nuclear magnetic resonance (NMR) spectroscopic determination of glucose metabolism in the brain. Bidirectional exchange between initially unlabeled glutamate and labeled α-ketoglutarate, formed from pyruvate via pyruvate dehydrogenase (PDH), indicates the rate of energy metabolism in the tricarboxylic acid (V(TCA)) cycle in neurons (V(PDH, n)) and, with additional computation, also in astrocytes (V(PDH, g)), as confirmed using the astrocyte-specific substrate [(13)C]acetate. Formation of new molecules of glutamate during increased glutamatergic activity occurs only in astrocytes by combined pyruvate carboxylase (V(PC)) and astrocytic PDH activity. V(PDH, g) accounts for ~15% of total pyruvate metabolism in the brain cortex, and V(PC) accounts for another ~10%. Since both PDH-generated and PC-generated pyruvates are needed for glutamate synthesis, ~20/25 (80%) of astrocytic pyruvate metabolism proceed via glutamate formation. Net transmitter glutamate [γ-aminobutyric acid (GABA)] formation requires transfer of newly synthesized α-ketoglutarate to the astrocytic cytosol, α-ketoglutarate transamination to glutamate, amidation to glutamine, glutamine transfer to neurons, its hydrolysis to glutamate and glutamate release (or GABA formation). Glutamate-glutamine cycling, measured as glutamine synthesis rate (V(cycle)), also transfers previously released glutamate/GABA to neurons after an initial astrocytic accumulation and measures predominantly glutamate signaling. An empirically established ~1/1 ratio between glucose metabolism and V(cycle) may reflect glucose utilization associated with oxidation/reduction processes during glutamate production, which together with associated transamination processes are balanced by subsequent glutamate oxidation after cessation of increased signaling activity. Astrocytic glutamate formation and subsequent oxidative metabolism provide large amounts of adenosine triphosphate used for accumulation from extracellular clefts of neuronally released K(+) and glutamate and for cytosolic Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, No. 92 Beier Road, Heping District, Shenyang, PR China.
| |
Collapse
|
35
|
Butt AM. ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 2011; 22:205-13. [PMID: 21376829 DOI: 10.1016/j.semcdb.2011.02.023] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 11/17/2022]
Abstract
Astrocytes are ideally situated to integrate glial and neuronal functions and neurovascular coupling by way of their multiple contacts with neurons, glia and blood vessels. There is a high degree of specialisation of astroglial membranes at the different sites of contact, including the expression of neurotransmitter receptors, ion channels, transporters and gap junctional proteins. An apparently universal property of astrocytes throughout the CNS is their responsiveness to ATP acting via metabotropic P2Y receptors, with a prominent role for the P2Y1 receptor subtype. Activation of astroglial P2Y receptors triggers a rise in intracellular calcium, which is the substrate for astroglial excitability and intercellular communication. In addition, astrocytes have a number of mechanisms for the release of ATP, which can be considered a 'gliotransmitter'. Astrocytes may be the most widespread source of ATP release in the CNS, and astroglial ATP and its metabolite adenosine activate purine receptors on neurons, microglia, oligodendrocytes and blood vessels. There is compelling evidence that astroglial ATP and adenosine regulate neuronal synaptic strength, although the physiological significance of this astrocyte-to-neuron signalling is questioned. A less appreciated aspect of astrocyte signalling is that they also release neurotransmitters onto other glia. Notably, both ATP and adenosine control microglial behaviour and regulate oligodendrocyte differentiation and myelination. P2 receptors also mediate injury responses in all glial cell types, with a prominent role for the P2X7 receptor subtype. In addition, ATP is a potent vasoconstrictor and astrocytes provide a route for coupling blood flow to neuronal activity by way of their synaptic and perivascular connections. Thus, astrocytes are the fulcrum of neuron-glial-vascular networks and purinergic signalling is the primary mechanism by which astrocytes can integrate the functions of these diverse elements.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|