1
|
Roy Choudhury N, Hilber P, Cendelin J. Lurcher Mouse as a Model of Cerebellar Syndromes. CEREBELLUM (LONDON, ENGLAND) 2025; 24:54. [PMID: 40016581 PMCID: PMC11868327 DOI: 10.1007/s12311-025-01810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Cerebellar extinction lesions can manifest themselves with cerebellar motor and cerebellar cognitive affective syndromes. For investigation of the functions of the cerebellum and the pathogenesis of cerebellar diseases, particularly hereditary neurodegenerative cerebellar ataxias, various cerebellar mutant mice are used. The Lurcher mouse is a model of selective olivocerebellar degeneration with early onset and rapid progress. These mice show both motor deficits as well as cognitive and behavioral changes i.e., pathological phenotype in the functional domains affected in cerebellar patients. Therefore, Lurcher mice might be considered as a tool to investigate the mechanisms of functional impairments caused by cerebellar degenerative diseases. There are, however, limitations due to the particular features of the neurodegenerative process and a lack of possibilities to examine some processes in mice. The main advantage of Lurcher mice would be the expected absence of significant neuropathologies outside the olivocerebellar system that modify the complex behavioral phenotype in less selective models. However, detailed examinations and further thorough validation of the model are needed to verify this assumption.
Collapse
Affiliation(s)
- Nilpawan Roy Choudhury
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pascal Hilber
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245 NeuroGlio Team, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, 76000, France
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, Plzen, 323 00, Czech Republic.
| |
Collapse
|
2
|
Choi D, Paré J, Dravid S, Smith Y. Ultrastructural Localization of Glutamate Delta Receptor 1 in the Rodent and Primate Lateral Habenula. J Comp Neurol 2025; 533:e70019. [PMID: 39794140 PMCID: PMC11723828 DOI: 10.1002/cne.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1. Thus, disruption in GluD1 synaptic signaling may contribute to LHb dysfunction and the pathophysiology of LHb-associated disorders. Despite its strong cellular expression, little is known about the subsynaptic and subcellular localization of GluD1 in LHb neurons. Given that GluD1 is involved in the development and/or regulation of glutamatergic and GABAergic synapses in various brain regions, a detailed map of GluD1 synaptic localization is essential to elucidate its role in the LHb. To address this issue, we used immunoelectron microscopy methods in rodents and monkeys. In both species, GluD1 immunoreactivity was primarily expressed in dendritic profiles, with lower expression in somata, spines, and glial elements. Pre- and post-embedding immunogold experiments revealed strong GluD1 expression in the core of symmetric GABAergic synapses. Albeit less frequent, GluD1 was also found at the edges (i.e., perisynaptic) of asymmetric, putative glutamatergic synapses. Through the combination of anterograde tracing with immunogold labeling in rats, we showed that axon terminals from the entopeduncular nucleus and the lateral hypothalamus express postsynaptic GluD1 immunolabeling in the LHb. Our findings suggest that GluD1 may play a critical role in modulating GABAergic transmission in the rodent and primate LHb.
Collapse
Affiliation(s)
- Diane Choi
- Graduate Program in Molecular and Systems PharmacologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Jean‐Francois Paré
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Shashank Dravid
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Yoland Smith
- Graduate Program in Molecular and Systems PharmacologyEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
4
|
Hoover AH, Pavuluri R, Shelkar GP, Dravid SM, Smith Y, Villalba RM. Ultrastructural localization of glutamate delta 1 (GluD1) receptor immunoreactivity in the mouse and monkey striatum. J Comp Neurol 2020; 529:1703-1718. [PMID: 33084025 DOI: 10.1002/cne.25051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The glutamate receptor delta 1 (GluD1) is strongly expressed in the striatum. Knockout of GluD1 expression in striatal neurons elicits cognitive deficits and disrupts the thalamostriatal system in mice. To understand the potential role of GluD1 in the primate striatum, we compared the cellular and subcellular localization of striatal GluD1 immunoreactivity (GluD1-IR) in mice and monkeys. In both species, striatal GluD1-IR displayed a patchy pattern of distribution in register with the striosome/matrix compartmentation, but in an opposite fashion. While GluD1 was more heavily expressed in the striosomes than the matrix in the monkey caudate nucleus, the opposite was found in the mouse striatum. At the electron microscopic level, GluD1-IR was preferentially expressed in dendritic shafts (47.9 ± 1.2%), followed by glia (37.7 ± 2.5%), and dendritic spines (14.3 ± 2.6%) in the matrix of the mouse striatum. This pattern was not statistically different from the labeling in the striosome and matrix compartments of the monkey caudate nucleus, with the exception of a small amount of GluD1-positive unmyelinated axons and axon terminals in the primate striatum. Immunogold staining revealed synaptic and perisynaptic GluD1 labeling at putative axo-dendritic and axo-spinous glutamatergic synapses, and intracellular labeling on the surface of mitochondria. Confocal microscopy showed that GluD1 is preferentially colocalized with thalamic over cortical terminals in both the striosome and matrix compartments. These data provide the anatomical substrate for a deeper understanding of GluD1 regulation of striatal glutamatergic synapses, but also suggest possible extrasynaptic, glial, and mitochondrial GluD1 functions.
Collapse
Affiliation(s)
- Andrew H Hoover
- Yerkes National Primate Research Center, Atlanta, Georgia, USA.,UDALL Center of Excellence for Parkinson's Disease, Atlanta, Georgia, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, Georgia, USA.,UDALL Center of Excellence for Parkinson's Disease, Atlanta, Georgia, USA.,Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Rosa M Villalba
- Yerkes National Primate Research Center, Atlanta, Georgia, USA.,UDALL Center of Excellence for Parkinson's Disease, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Altered Glutamate Receptor Ionotropic Delta Subunit 2 Expression in Stau2-Deficient Cerebellar Purkinje Cells in the Adult Brain. Int J Mol Sci 2019; 20:ijms20071797. [PMID: 30979012 PMCID: PMC6480955 DOI: 10.3390/ijms20071797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein that is involved in dendritic spine morphogenesis and function. Several studies have recently investigated the role of Stau2 in the regulation of its neuronal target mRNAs, with particular focus on the hippocampus. Here, we provide evidence for Stau2 expression and function in cerebellar Purkinje cells. We show that Stau2 downregulation (Stau2GT) led to an increase of glutamate receptor ionotropic delta subunit 2 (GluD2) in Purkinje cells when animals performed physical activity by voluntary wheel running compared with the age-matched wildtype (WT) mice (C57Bl/6J). Furthermore, Stau2GT mice showed lower performance in motor coordination assays but enhanced motor learning abilities than did WT mice, concomitantly with an increase in dendritic GluD2 expression. Together, our results suggest the novel role of Stau2 in Purkinje cell synaptogenesis in the mouse cerebellum.
Collapse
|
6
|
Wang Y, Dong J, Wang Y, Wei W, Song B, Shan Z, Teng W, Chen J. Developmental Hypothyroxinemia and Hypothyroidism Reduce Parallel Fiber-Purkinje Cell Synapses in Rat Offspring by Downregulation of Neurexin1/Cbln1/GluD2 Tripartite Complex. Biol Trace Elem Res 2016; 173:465-74. [PMID: 27033232 DOI: 10.1007/s12011-016-0664-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/23/2016] [Indexed: 01/19/2023]
Abstract
Iodine is a significant micronutrient. Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during developmental period can cause cerebellar dysfunction. However, mechanisms are still unclear. Therefore, the present research aims to study effects of developmental hypothyroxinemia caused by mild ID and hypothyroidism caused by severe ID or methimazole (MMZ) on parallel fiber-Purkinje cell (PF-PC) synapses in filial cerebellum. Maternal hypothyroxinemia and hypothyroidism models were established in Wistar rats using ID diet and deionized water supplemented with different concentrations of potassium iodide or MMZ water. Birth weight and cerebellum weight were measured. We also examined PF-PC synapses using immunofluorescence, and western blot analysis was conducted to investigate the activity of Neurexin1/cerebellin1 (Cbln1)/glutamate receptor d2 (GluD2) tripartite complex. Our results showed that hypothyroxinemia and hypothyroidism decreased birth weight and cerebellum weight and reduced the PF-PC synapses on postnatal day (PN) 14 and PN21. Accordingly, the mean intensity of vesicular glutamate transporter (VGluT1) and Calbindin immunofluorescence was reduced in mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of Neurexin1/Cbln1/GluD2 tripartite complex. Our study supports the hypothesis that developmental hypothyroxinemia and hypothyroidism reduce PF-PC synapses, which may be attributed to the downregulation of Neurexin1/Cbln1/GluD2 tripartite complex.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Zhongyan Shan
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
7
|
Hamza MM, Rey SA, Hilber P, Arabo A, Collin T, Vaudry D, Burel D. Early Disruption of Extracellular Pleiotrophin Distribution Alters Cerebellar Neuronal Circuit Development and Function. Mol Neurobiol 2016; 53:5203-16. [PMID: 26399645 PMCID: PMC5012153 DOI: 10.1007/s12035-015-9450-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/16/2015] [Indexed: 12/16/2022]
Abstract
The cerebellum is a structure of the central nervous system involved in balance, motor coordination, and voluntary movements. The elementary circuit implicated in the control of locomotion involves Purkinje cells, which receive excitatory inputs from parallel and climbing fibers, and are regulated by cerebellar interneurons. In mice as in human, the cerebellar cortex completes its development mainly after birth with the migration, differentiation, and synaptogenesis of granule cells. These cellular events are under the control of numerous extracellular matrix molecules including pleiotrophin (PTN). This cytokine has been shown to regulate the morphogenesis of Purkinje cells ex vivo and in vivo via its receptor PTPζ. Since Purkinje cells are the unique output of the cerebellar cortex, we explored the consequences of their PTN-induced atrophy on the function of the cerebellar neuronal circuit in mice. Behavioral experiments revealed that, despite a normal overall development, PTN-treated mice present a delay in the maturation of their flexion reflex. Moreover, patch clamp recording of Purkinje cells revealed a significant increase in the frequency of spontaneous excitatory postsynaptic currents in PTN-treated mice, associated with a decrease of climbing fiber innervations and an abnormal perisomatic localization of the parallel fiber contacts. At adulthood, PTN-treated mice exhibit coordination impairment on the rotarod test associated with an alteration of the synchronization gait. Altogether these histological, electrophysiological, and behavior data reveal that an early ECM disruption of PTN composition induces short- and long-term defaults in the establishment of proper functional cerebellar circuit.
Collapse
Affiliation(s)
- M M Hamza
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Rouen, 76821, Mont-Saint-Aignan cedex, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Mont-Saint-Aignan, France
| | - S A Rey
- CNRS-UMR 8118, Laboratory of Cerebral Physiology, University Paris Descartes, 75006, Paris, France
| | - P Hilber
- EA 4700, Laboratory of Psychology and Neuroscience of Cognition, University of Rouen, 76821-cedex, Mont-Saint-Aignan, France
| | - A Arabo
- UFR sciences et techniques, University of Rouen, 76821-cedex, Mont-Saint-Aignan, France
| | - T Collin
- CNRS-UMR 8118, Laboratory of Cerebral Physiology, University Paris Descartes, 75006, Paris, France
| | - D Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Rouen, 76821, Mont-Saint-Aignan cedex, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Mont-Saint-Aignan, France
| | - D Burel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Rouen, 76821, Mont-Saint-Aignan cedex, France.
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Mont-Saint-Aignan, France.
| |
Collapse
|
8
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, Meyer T. De novo partial deletion in GRID2 presenting with complicated spastic paraplegia. Muscle Nerve 2013; 49:289-92. [PMID: 24122788 DOI: 10.1002/mus.24096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Complex forms of spastic paraplegia (SPG) are rare and genetically heterogeneous. In apparently sporadic cases, analysis of known SPG genes often fails to reveal a mutation. METHODS We report a 24-year-old patient with a syndrome of spastic paraplegia, ataxia, frontotemporal dementia, and lower motor neuron involvement. RESULTS Screening of the patient's genome for copy number variation identified a novel 276 kb deletion spanning the first exon of the GRID2 gene. MRI scan showed atrophy of the cerebellum, and electromyography revealed a chronic disorder of motor neurons or their axons. A deletion in GRID2, coding for the glutamate receptor delta-2 subunit precursor protein, was excluded in either parent, suggesting that the deletion in the index patient occurred de novo. CONCLUSIONS We hypothesize that the deletion identified here is the cause of our patient's clinical presentation, due to the resemblance to the GRID2 mutation phenotype in mouse models.
Collapse
Affiliation(s)
- André Maier
- Department of Neurology, Campus Virchow-Klinikum, Charité - University Hospital, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Contribution of Postsynaptic GluD2 to Presynaptic R-type Ca2+ Channel Function, Glutamate Release and Long-term Potentiation at Parallel Fiber to Purkinje Cell Synapses. THE CEREBELLUM 2013; 12:657-66. [DOI: 10.1007/s12311-013-0474-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Glutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 2013; 32:15296-308. [PMID: 23115168 DOI: 10.1523/jneurosci.0705-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TRPC3), which is also needed for mGluR1-dependent slow EPSCs and motor coordination and associates with mGluR1, GluRδ2, and PKCγ. Mutation of GluRδ2 changes subcellular fractionation of mGluR1 and TRPC3 to increase their surface expression. Fitting with this, mGluR1-evoked inward currents are increased in GluRδ2 mutant mice. Moreover, loss of GluRδ2 disrupts the time course of mGluR1-dependent synaptic transmission at parallel fiber-Purkinje cells synapses. Thus, GluRδ2 is part of the mGluR1 signaling complex needed for cerebellar synaptic function and motor coordination, explaining the shared cerebellar motor phenotype that manifests in mutants of the mGluR1 and GluRδ2 signaling pathways.
Collapse
|
12
|
Manto M, De Zeeuw CI. Diversity and complexity of roles of granule cells in the cerebellar cortex. Editorial. THE CEREBELLUM 2012; 11:1-4. [PMID: 22396329 DOI: 10.1007/s12311-012-0365-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.
Collapse
|
13
|
Ryu K, Yokoyama M, Yamashita M, Hirano T. Induction of excitatory and inhibitory presynaptic differentiation by GluD1. Biochem Biophys Res Commun 2011; 417:157-61. [PMID: 22138648 DOI: 10.1016/j.bbrc.2011.11.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022]
Abstract
The δ subfamily of ionotropic glutamate receptor subunits consists of GluD1 and GluD2. GluD2, which is selectively expressed in cerebellar Purkinje neurons, has been shown to contribute to the formation of synapses between granule neurons and Purkinje neurons through interaction with Cbln1 (cerebellin precursor protein1) and presynaptic Neurexin. On the other hand, the synaptogenic activity of GluD1, which is expressed not in the cerebellum but in the hippocampus, remains to be characterized. Here, we report that GluD1 expressed in non-neuronal HEK cells, induced presynaptic differentiation of granule neurons through its N-terminal domain in co-cultures with cerebellar neurons, similarly to GluD2. We also show that GluD1 rescued the defect of synapse formation in GluD2-knockout Purkinje neurons, indicating the functional similarity of GluD1 and GluD2. In contrast, GluD1 expression alone did not induce presynaptic differentiation in co-cultures of HEK cells with hippocampal neurons. However, when Cbln1 was exogenously added to the culture medium, GluD1 induced presynaptic differentiation of not only glutamatergic presynaptic terminals but also GABAergic ones. Cbln1 is not expressed in hippocampal neurons but is expressed in entorhinal cortical neurons projecting to the hippocampus. In co-cultures of HEK cells expressing GluD1 and entorhinal cortical neurons, both glutamatergic and GABAergic presynaptic terminals were formed on the HEK cells without exogenous application of Cbln1. These results suggest that GluD1 might contribute to the formation of specific synapses in the hippocampus such as those formed by the projecting neurons of the entorhinal cortex.
Collapse
Affiliation(s)
- Kyounghee Ryu
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|