1
|
Monti DA, Vedaei F, Tobia A, Navarreto E, Hriso C, Ross R, Raja R, Wintering N, Zabrecky GP, Mohamed F, Newberg AB. Brain functional connectivity changes on fMRI in patients with chronic pelvic pain treated with the Neuro Emotional Technique: a randomised controlled trial. J OBSTET GYNAECOL 2025; 45:2472767. [PMID: 40083279 DOI: 10.1080/01443615.2025.2472767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Chronic pelvic pain is a substantial clinical challenge that profoundly impacts quality of life for many women. The Neuro Emotional Technique (NET) is a novel mind-body intervention designed to attenuate emotional arousal of distressing thoughts and pain. This study evaluated functional connectivity changes in key areas of the brain in patients with chronic pelvic pain receiving the NET intervention. The goal was to assess whether the NET intervention was associated with functional connectivity (FC) changes in the brain related to reductions in emotional distress and pain, particularly in the limbic areas, sensory/pain regions, and cerebellum. METHODS This is a prospectively designed study that included twenty-six patients with a diagnosis of chronic pelvic pain who were randomised to either the NET intervention or a waitlist control. To evaluate the primary outcome of neurophysiological effects, all participants received resting state functional blood oxygen level dependent (BOLD) magnetic resonance imaging (rs-fMRI) before and after the NET intervention or waitlist control period. Pain, mood, anxiety, and quality of life also were assessed. RESULTS Compared to the control group, the NET group demonstrated significant improvements in pain interference and pain intensity, and in emotional measures such anxiety and depression. Functional connectivity in the NET group compared to controls, was significantly decreased in the amygdala, cerebellum, and postcentral gyrus. There were also significant correlations between FC changes and changes in clinical measures. CONCLUSIONS This study is an initial step towards describing a neurological signature of reducing emotional distress in women with chronic pelvic pain. Specifically, FC changes between the cerebellum and the amygdala and sensory areas appears to be associated with a reduction in pain and the effects of that pain. Future, larger clinical trials are warranted to further evaluate these mechanisms and NET as a potential therapeutic intervention in patients with chronic pelvic pain.
Collapse
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Tobia
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reneita Ross
- Department Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rohit Raja
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - George P Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Monti DA, Wintering N, Vedaei F, Steinmetz A, Mohamed FB, Newberg AB. Changes in brain functional connectivity associated with transcutaneous auricular vagus nerve stimulation in healthy controls. Front Hum Neurosci 2025; 19:1531123. [PMID: 40115886 PMCID: PMC11925341 DOI: 10.3389/fnhum.2025.1531123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose A growing number of research studies have explored the potential effects of vagus nerve stimulation (VNS) on brain physiology as well as clinical effects particularly related to stress and anxiety. However, there currently are limited studies showing functional changes during different frequencies of stimulation and laterality effects transcutaneous auricular VNS (TaVNS). In this study, we evaluated whether TaVNS alters functional connectivity in the brain of healthy controls. We hypothesized that TaVNS would significantly alter connectivity in areas involved with emotional processing and regulation including the limbic areas, insula, frontal lobe regions, and cerebellum. Methods We enrolled 50 healthy controls. Participants were placed in the MRI scanner with MRI compatible ear buds that provided TaVNS. Subjects underwent TaVNS in the left, right, and both ears in a randomized manner during the MRI session. Stimulation was provided for 5 min on and then there was a 5 min off period in between. To evaluate the primary outcome of neurophysiological effects, all participants received blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) during the TaVNS on and off states. Results The results demonstrated significant changes in functional connectivity during TaVNS that differed depending on the frequency of stimulation and which ear was stimulated. In general, areas of the brain that had altered functional connectivity included the frontoparietal regions, limbic regions, insula, and cerebellum. Interestingly, cognitive areas were also involved including parts of the temporal lobe, salience network, and default mode network. Conclusion This study is an initial step toward understanding the functional connectivity changes associated with TaVNS. The findings indicate significant brain changes, particularly in areas that are involved with emotional processing and regulation, as well as cognition. Future studies can expand on this data and focus on specific patient populations to determine the effects of TaVNS.
Collapse
Affiliation(s)
- Daniel A Monti
- Marcus Institute of Integrative Health, Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Marcus Institute of Integrative Health, Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Faezeh Vedaei
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alicia Steinmetz
- Marcus Institute of Integrative Health, Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Marcus Institute of Integrative Health, Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Blithikioti C, Duek O, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D, Perl O. Cerebellar Contributions to Traumatic Autobiographical Memory in People with Post-Traumatic Stress Disorder. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2332-2340. [PMID: 39180693 DOI: 10.1007/s12311-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health condition characterized by recurrent re-experiencing of traumatic events. Despite increasing evidence suggesting that the cerebellum is involved in PTSD pathophysiology, it remains unclear whether this involvement is related to symptoms directly resulting from previous trauma exposure, such as involuntary re-experiencing of the traumatic events, or reflects a broader cerebellar engagement in negative affective states. In this study, we investigated the specific role of the cerebellum in PTSD by employing a script reactivation paradigm with personalized traumatic and sad autobiographical memories in 28 individuals diagnosed with chronic PTSD. Functional magnetic resonance imaging (fMRI) data were collected while participants listened to their own autobiographical narratives recounted by a third person. Activation in the right cerebellar lobule VI was uniquely associated with traumatic autobiographical recall and was parametrically modulated by the severity of re-experiencing symptoms. In contrast, cerebellar Crus II showed increased activation during both traumatic and sad autobiographical recall, suggesting a broader involvement in processing negative emotions. Our findings highlight the unique contribution of the right cerebellar lobule VI in the processing of traumatic autobiographical memories, potentially through its engagement in low-level representation of sensory and emotional aspects of traumatic events.
Collapse
Affiliation(s)
- Chrysanthi Blithikioti
- Department of Psychiatry, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Daniela Schiller
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Perl
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Bakker J. Neurobiological characteristics associated with gender identity: Findings from neuroimaging studies in the Amsterdam cohort of children and adolescents experiencing gender incongruence. Horm Behav 2024; 164:105601. [PMID: 39029340 DOI: 10.1016/j.yhbeh.2024.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
This review has been based on my invited lecture at the annual meeting of the Society for Behavioral Neuroendocrinology in 2023. Gender incongruence is defined as a marked and persistent incongruence between an individual's experienced gender and the sex assigned at birth. A prominent hypothesis on the etiology of gender incongruence proposes that it is related to an altered or less pronounced sexual differentiation of the brain. This hypothesis has primarily been based on postmortem studies of the hypothalamus in transgender individuals. To further address this hypothesis, a series of structural and functional neuroimaging studies were conducted in the Amsterdam cohort of children and adolescents experiencing gender incongruence. Additional research objectives were to determine whether any sex and gender differences are established before or after puberty, as well as whether gender affirming hormone treatment would affect brain development and function. We found some evidence in favor of the sexual differentiation hypothesis at the functional level, but this was less evident at the structural level. We also observed some specific transgender neural signatures, suggesting that they might present a unique brain phenotype rather than being shifted towards either end of the male-female spectrum. Our results further suggest that the years between childhood and mid-adolescence represent an important period in which puberty-related factors influence several neural characteristics, such as white matter development and functional connectivity patterns, in both a sex and gender identity specific way. These latter observations thus lead to the important question about the possible negative consequences of delaying puberty on neurodevelopment. To further address this question, larger-scale, longitudinal studies are required to increase our understanding of the possible neurodevelopmental impacts of delaying puberty in transgender youth.
Collapse
Affiliation(s)
- Julie Bakker
- GIGA Neurosciences, University of Liège, Belgium.
| |
Collapse
|
5
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
6
|
Ciricugno A, Ferrari C, Battelli L, Cattaneo Z. A chronometric study of the posterior cerebellum's function in emotional processing. Curr Biol 2024; 34:1844-1852.e3. [PMID: 38565141 DOI: 10.1016/j.cub.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The posterior cerebellum is a recently discovered hub of the affective and social brain, with different subsectors contributing to different social functions. However, very little is known about when the posterior cerebellum plays a critical role in social processing. Due to its location and anatomy, it has been difficult to use traditional approaches to directly study the chronometry of the cerebellum. To address this gap in cerebellar knowledge, here we investigated the causal contribution of the posterior cerebellum to social processing using a chronometric transcranial magnetic stimulation (TMS) approach. We show that the posterior cerebellum is recruited at an early stage of emotional processing (starting from 100 ms after stimulus onset), simultaneously with the posterior superior temporal sulcus (pSTS), a key node of the social brain. Moreover, using a condition-and-perturb TMS approach, we found that the recruitment of the pSTS in emotional processing is dependent on cerebellar activation. Our results are the first to shed light on chronometric aspects of cerebellar function and its causal functional connectivity with other nodes of the social brain.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Chiara Ferrari
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Humanities, University of Pavia, Piazza Botta 6, Pavia 27100, Italy
| | - Lorella Battelli
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Kirstein Building KS 158, Boston, MA 02215, USA; Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, Rovereto 38068, Italy
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo 24129, Italy.
| |
Collapse
|
7
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Petrosini L, Picerni E, Termine A, Fabrizio C, Laricchiuta D, Cutuli D. The Cerebellum as an Embodying Machine. Neuroscientist 2024; 30:229-246. [PMID: 36052895 DOI: 10.1177/10738584221120187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas emotion theorists often keep their distance from the embodied approach, theorists of embodiment tend to treat emotion as a mainly physiologic process. However, intimate links between emotions and the body suggest that emotions are privileged phenomena to attempt to reintegrate mind and body and that the body helps the mind in shaping emotional responses. To date, research has favored the cerebrum over other parts of the brain as a substrate of embodied emotions. However, given the widely demonstrated contribution of the cerebellum to emotional processing, research in affective neuroscience should consider embodiment theory as a useful approach for evaluating the cerebellar role in emotion and affect. The aim of this review is to insert the cerebellum among the structures needed to embody emotions, providing illustrative examples of cerebellar involvement in embodied emotions (as occurring in empathic abilities) and in impaired identification and expression of embodied emotions (as occurring in alexithymia).
Collapse
Affiliation(s)
| | | | | | | | | | - Debora Cutuli
- Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| |
Collapse
|
9
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Yan H, Han Y, Shan X, Li H, Liu F, Zhao J, Li P, Guo W. Shared and distinctive dysconnectivity patterns underlying pure generalized anxiety disorder (GAD) and comorbid GAD and depressive symptoms. J Psychiatr Res 2024; 170:225-236. [PMID: 38159347 DOI: 10.1016/j.jpsychires.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The resting-state connectivity features underlying pure generalized anxiety disorder (GAD, G1) and comorbid GAD and depressive symptoms (G2) have not been directly compared. Furthermore, it is unclear whether these features might serve as potential prognostic biomarkers and change with treatment. Degree centrality (DC) in G1 (40 subjects), G2 (58 subjects), and healthy controls (HCs, 54 subjects) was compared before treatment, and the DC of G1 or G2 at baseline was compared with that after 4 weeks of paroxetine treatment. Using support vector regression (SVR), voxel-wise DC across the entire brain and abnormal DC at baseline were employed to predict treatment response. At baseline, G1 and G2 exhibited lower DC in the left mid-cingulate cortex and vermis IV/V compared to HCs. Additionally, compared to HCs, G1 had lower DC in the left middle temporal gyrus, while G2 showed higher DC in the right inferior temporal/fusiform gyrus. However, there was no significant difference in DC between G1 and G2. The SVR based on abnormal DC at baseline could successfully predict treatment response in responders in G2 or in G1 and G2. Notably, the predictive performance based on abnormal DC at baseline surpassed that based on DC across the entire brain. After treatment, G2 responders showed lower DC in the right medial orbital frontal gyrus, while no change in DC was identified in G1 responders. The G1 and G2 showed common and distinct dysconnectivity patterns and they could potentially serve as prognostic biomarkers. Furthermore, DC in patients with GAD could change with treatment.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
11
|
Wabnegger A, Schienle A. Atypical cerebellar activity and connectivity during affective touch in adults with skin-picking disorder. Brain Imaging Behav 2024; 18:184-191. [PMID: 37973691 PMCID: PMC10844139 DOI: 10.1007/s11682-023-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Excessive touching and picking of one's skin are core symptoms of skin-picking disorder (SPD). Previous research has shown that patients with SPD display difficulties in motor control and show altered reward responsivity. Considering the limited knowledge about neuronal mechanisms in SPD, particularly concerning the cerebellum, the analysis focused on this brain region due to its involvement in sensorimotor and affective functions. The participants of the present study received affective (caress-like), which is typically perceived as pleasant and can be passively enjoyed. A total of 132 female participants (70 patients with SPD, 62 healthy controls) received affective and nonaffective touch to their forearms (slow vs. fast brushing) during functional magnetic resonance imaging. This tactile stimulation was rated according to pleasure, arousal, and the urge to pick one's skin. Being touched was perceived as more negative and arousing by the SPD group, and elicited a greater urge to perform skin-picking. During affective touch, those participants with SPD were characterized by reduced activity in lobule VIII, reduced functional connectivity of lobule VIII with the hippocampus, and increased connectivity with the superior parietal lobule. Since VIII is involved in the inhibition of movement, the present findings point to deficient motor control in SPD in the context of affective-sensory processing.
Collapse
Affiliation(s)
- Albert Wabnegger
- Clinical Psychology, University of Graz, BioTechMed, Universitätsplatz 2/III, Graz, A-8010, Austria
| | - Anne Schienle
- Clinical Psychology, University of Graz, BioTechMed, Universitätsplatz 2/III, Graz, A-8010, Austria.
| |
Collapse
|
12
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
13
|
Ferrari C, Ciricugno A, Arioli M, Cattaneo Z. Functional Segregation of the Human Cerebellum in Social Cognitive Tasks Revealed by TMS. J Neurosci 2023; 43:3708-3717. [PMID: 37037608 PMCID: PMC10198446 DOI: 10.1523/jneurosci.1818-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
The role of the posterior cerebellum in social cognition is well established; however, it is still unclear whether different cerebellar subregions contribute to different social cognitive processes by exerting specific functions. Here, we employed transcranial magnetic stimulation (TMS) in male and female healthy humans to test the hypothesis of the existence of a medial-to-lateral gradient in the functional organization of the posterior cerebellum, according to which the phylogenetically newer cerebellar hemispheres are involved in tasks requiring higher-level social inferences whereas vermal/medial sectors are involved in basic perceptual emotional mechanisms. We found that interfering via TMS with activity of the medial cerebellum significantly impaired basic emotional recognition/discrimination. In turn, only TMS over the lateral cerebellum affected a task requiring recognizing an emotion considering the social context in which it was experienced. Overall, our data support the existence of a medial-to-lateral gradient in the posterior cerebellum, with medial sectors supporting basic emotion recognition and lateral sectors being recruited when the task taps on higher inferential processing/mentalizing. Interestingly, the contribution of the cerebellum in these different processes seems to be restricted to negative emotional stimuli.SIGNIFICANCE STATEMENT The cerebellum has been recently recognized as a critical component of the social brain, however, the functional topography of this structure in relation to social and emotional processes is still debated. By adopting a causative approach through the use of transcranial magnetic stimulation (TMS), the present study critically insights into the functional organization of the posterior cerebellum by testing the hypothesis of a medial-to-lateral gradient that reflects increasing complexity of social cognitive processes. Our findings demonstrate that lateral and medial cerebellar regions exert partially distinguishable functions in the social cognitive domain, with the medial cerebellum that mainly mediates basic perceptual emotional mechanisms while the lateral cerebellum, although supporting more basic functions, further subserves higher-level social operations.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Humanities, University of Pavia, Pavia 27100, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Mondino Foundation, Pavia 27100, Italy
| | - Andrea Ciricugno
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Mondino Foundation, Pavia 27100, Italy
| | - Maria Arioli
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - Zaira Cattaneo
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Mondino Foundation, Pavia 27100, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| |
Collapse
|
14
|
Huang X, Zhuo Y, Wang X, Xu J, Yang Z, Zhou Y, Lv H, Ma X, Yan B, Zhao H, Yu H. Structural and functional improvement of amygdala sub-regions in postpartum depression after acupuncture. Front Hum Neurosci 2023; 17:1163746. [PMID: 37266323 PMCID: PMC10229903 DOI: 10.3389/fnhum.2023.1163746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
Objective This study aimed to analyze the changes in structure and function in amygdala sub-regions in patients with postpartum depression (PPD) before and after acupuncture. Methods A total of 52 patients with PPD (All-PPD group) were included in this trial, 22 of which completed 8 weeks of acupuncture treatment (Acu-PPD group). An age-matched control group of 24 healthy postpartum women (HPW) from the hospital and community were also included. Results from the 17-Hamilton Depression Scale (17-HAMD) and the Edinburgh Postnatal Depression Scale (EPDS) were evaluated, and resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed at baseline and after the acupuncture treatment. Sub-regions of the amygdala were used as seed regions to measure gray matter volume (GMV) and analyzed for resting-state functional connectivity (RSFC) values separately. Finally, correlation analyses were performed on all patients with PPD to evaluate association values between the clinical scale scores, GMV, and RSFC values, while controlling for age and education. Pearson's correlation analyses were conducted to investigate the relevance between GMV and RSFC values of brain regions that differed before and after acupuncture treatment and clinical scale scores in Acu-PPD patients. Results The HAMD scores for Acu-PPD were reduced after acupuncture treatment (P < 0.05), suggesting the positive effects of acupuncture on depression symptoms. Structurally, the All-PPD group showed significantly decreased GMV in the left lateral part of the amygdala (lAMG.L) and the right lateral part of the amygdala (lAMG.R) compared to the HPW group (P < 0.05). In addition, the GMV of lAMG.R was marginally increased in the Acu-PPD group after acupuncture (P < 0.05). Functionally, the Acu-PPD group showed a significantly enhanced RSFC between the left medial part of the amygdala (mAMG.L) and the left vermis_6, an increased RSFC between the right medial part of the amygdala (mAMG.R) and left vermis_6, and an increased RSFC between the lAMG.R and left cerebelum_crus1 (P < 0.05). Moreover, correlation studies revealed that the GMV in the lAMG.R was significantly related to the EPDS scores in the All-PPD group (P < 0.05). Conclusion Our findings demonstrated that the structure of amygdala sub-regions is impaired in patients with PPD. Acupuncture may improve depressive symptoms in patients with PPD, and the mechanism may be attributed to changes in the amygdala sub-region structure and the functional connections of brain areas linked to the processing of negative emotions. The fMRI-based technique can provide comprehensive neuroimaging evidence to visualize the central mechanism of action of acupuncture in PPD.
Collapse
Affiliation(s)
- Xingxian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Yuanyuan Zhuo
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Xinru Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinping Xu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuoxin Yang
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Yumei Zhou
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Hanqing Lv
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaoming Ma
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Bin Yan
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| | - Hong Zhao
- Luohu District of Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Haibo Yu
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Modern Applied Research on Acupuncture and Moxibustion, Shenzhen, China
| |
Collapse
|
15
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
16
|
Dang Q, Ma F, Yuan Q, Fu Y, Chen K, Zhang Z, Lu C, Guo T. Processing negative emotion in two languages of bilinguals: Accommodation and assimilation of the neural pathways based on a meta-analysis. Cereb Cortex 2023:7133665. [PMID: 37083264 DOI: 10.1093/cercor/bhad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous functional magnetic resonance imaging (fMRI) studies have examined the neural mechanisms of negative emotional words, but scarce evidence is available for the interactions among related brain regions from the functional brain connectivity perspective. Moreover, few studies have addressed the neural networks for negative word processing in bilinguals. To fill this gap, the current study examined the brain networks for processing negative words in the first language (L1) and the second language (L2) with Chinese-English bilinguals. To identify objective indicators associated with negative word processing, we first conducted a coordinate-based meta-analysis on contrasts between negative and neutral words (including 32 contrasts from 1589 participants) using the activation likelihood estimation method. Results showed that the left medial prefrontal cortex (mPFC), the left inferior frontal gyrus (IFG), the left posterior cingulate cortex (PCC), the left amygdala, the left inferior temporal gyrus (ITG), and the left thalamus were involved in processing negative words. Next, these six clusters were used as regions of interest in effective connectivity analyses using extended unified structural equation modeling to pinpoint the brain networks for bilingual negative word processing. Brain network results revealed two pathways for negative word processing in L1: a dorsal pathway consisting of the left IFG, the left mPFC, and the left PCC, and a ventral pathway involving the left amygdala, the left ITG, and the left thalamus. We further investigated the similarity and difference between brain networks for negative word processing in L1 and L2. The findings revealed similarities in the dorsal pathway, as well as differences primarily in the ventral pathway, indicating both neural assimilation and accommodation across processing negative emotion in two languages of bilinguals.
Collapse
Affiliation(s)
- Qinpu Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Fengyang Ma
- School of Education, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yongben Fu
- The Psychological Education and Counseling Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Chen
- Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Khatibi A, Roy M, Chen JI, Gill LN, Piche M, Rainville P. Brain responses to the vicarious facilitation of pain by facial expressions of pain and fear. Soc Cogn Affect Neurosci 2023; 18:6750003. [PMID: 36201353 PMCID: PMC9949570 DOI: 10.1093/scan/nsac056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Observing pain in others facilitates self-pain in the observer. Vicarious pain facilitation mechanisms are poorly understood. We scanned 21 subjects while they observed pain, fear and neutral dynamic facial expressions. In 33% of the trials, a noxious electrical stimulus was delivered. The nociceptive flexion reflex (NFR) and pain ratings were recorded. Both pain and fear expressions increased self-pain ratings (fear > pain) and the NFR amplitude. Enhanced response to self-pain following pain and fear observation involves brain regions including the insula (INS) (pain > fear in anterior part), amygdala, mid-cingulate cortex (MCC), paracentral lobule, precuneus, supplementary motor area and pre-central gyrus. These results are consistent with the motivational priming account where vicarious pain facilitation involves a global enhancement of pain-related responses by negatively valenced stimuli. However, a psychophysiological interaction analysis centered on the left INS revealed increased functional connectivity with the aMCC in response to the painful stimulus following pain observation compared to fear. The opposite connectivity pattern (fear > pain) was observed in the fusiform gyrus, cerebellum (I-IV), lingual gyrus and thalamus, suggesting that pain and fear expressions influence pain-evoked brain responses differentially. Distinctive connectivity patterns demonstrate a stronger effect of pain observation in the cingulo-insular network, which may reflect partly overlapping networks underlying the representation of pain in self and others.
Collapse
Affiliation(s)
- Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Roy
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1G1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jen-I Chen
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis-Nascan Gill
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Piche
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Pierre Rainville
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
18
|
Grecucci A, Sorella S, Consolini J. Decoding individual differences in expressing and suppressing anger from structural brain networks: A supervised machine learning approach. Behav Brain Res 2023; 439:114245. [PMID: 36470420 DOI: 10.1016/j.bbr.2022.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Anger can be broken down into different elements: a transitory state (state anger), a stable personality feature (trait anger), a tendency to express it (anger-out), or to suppress it (anger-in), and the ability to regulate it (anger control). These elements are characterized by individual differences that vary across a continuum. Among them, the abilities to express and suppress anger are of particular relevance as they determine outcomes and enable successful anger management in daily situations. The aim of this study was to demonstrate that anger suppression and expression can be decoded by patterns of grey matter of specific well-known brain networks. To this aim, a supervised machine learning technique, known as Kernel Ridge Regression, was used to predict anger expression and suppression scores of 212 healthy subjects from the grey matter concentration. Results show that individual differences in anger suppression were predicted by two grey matter patterns associated with the Default-Mode Network and the Salience Network. Additionally, individual differences in anger expression were predicted by a circuit mainly involving subcortical and fronto-temporal regions when considering whole brain grey matter features. These results expand previous findings regarding the neural bases of anger by showing that individual differences in specific anger-related components can be predicted by the grey matter features of specific networks.
Collapse
Affiliation(s)
- Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy; Center for Medical Sciences, CISMed, University of Trento, Trento, Italy.
| | - Sara Sorella
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy.
| | - Jennifer Consolini
- Clinical and Affective Neuroscience Lab, Cli.A.N. Lab, Department of Psychology and Cognitive Sciences - DiPSCo, University of Trento, Rovereto, Italy.
| |
Collapse
|
19
|
Thomasson M, Ceravolo L, Corradi-Dell’Acqua C, Mantelli A, Saj A, Assal F, Grandjean D, Péron J. Dysfunctional cerebello-cerebral network associated with vocal emotion recognition impairments. Cereb Cortex Commun 2023; 4:tgad002. [PMID: 36726795 PMCID: PMC9883615 DOI: 10.1093/texcom/tgad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Vocal emotion recognition, a key determinant to analyzing a speaker's emotional state, is known to be impaired following cerebellar dysfunctions. Nevertheless, its possible functional integration in the large-scale brain network subtending emotional prosody recognition has yet to be explored. We administered an emotional prosody recognition task to patients with right versus left-hemispheric cerebellar lesions and a group of matched controls. We explored the lesional correlates of vocal emotion recognition in patients through a network-based analysis by combining a neuropsychological approach for lesion mapping with normative brain connectome data. Results revealed impaired recognition among patients for neutral or negative prosody, with poorer sadness recognition performances by patients with right cerebellar lesion. Network-based lesion-symptom mapping revealed that sadness recognition performances were linked to a network connecting the cerebellum with left frontal, temporal, and parietal cortices. Moreover, when focusing solely on a subgroup of patients with right cerebellar damage, sadness recognition performances were associated with a more restricted network connecting the cerebellum to the left parietal lobe. As the left hemisphere is known to be crucial for the processing of short segmental information, these results suggest that a corticocerebellar network operates on a fine temporal scale during vocal emotion decoding.
Collapse
Affiliation(s)
- Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Leonardo Ceravolo
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Corrado Corradi-Dell’Acqua
- Theory of Pain Laboratory, Department of Psychology, Faculty of Psychology and Educational Sciences (FPSE), University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland,Geneva Neuroscience Centre, University of Geneva, Rue Michel-Servet 1, Geneva 1206, Switzerland
| | - Amélie Mantelli
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Arnaud Saj
- Department of Psychology, University of Montreal, Montreal, 90 avenue Vincent d'Indy Montréal, H2V 2S9 Montréal, Québec, Canada
| | - Frédéric Assal
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland,Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1206, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Centre for Affective Sciences, University of Geneva, 40 bd du Pont d’Arve, Geneva 1205, Switzerland
| | - Julie Péron
- Corresponding author: Clinical and Experimental Neuropsychology Laboratory, Faculté de Psychologie et des Sciences de l’Education, Université de Genève, 40 bd du Pont d’Arve, Geneva 1205, Switzerland.
| |
Collapse
|
20
|
Szabo E, Timmers I, Borsook D, Simons LE, Sieberg CB. Altered anterior insula functional connectivity in adolescent and young women with endometriosis-associated pain: Pilot resting-state fMRI study. Eur J Paediatr Neurol 2022; 41:80-90. [PMID: 36375399 PMCID: PMC9722632 DOI: 10.1016/j.ejpn.2022.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Endometriosis is the leading cause of chronic pelvic pain. Alterations in brain functional connectivity have been reported in adult women with endometriosis-associated pain (EAP), however, it is still unknown if similar patterns of changes exist in adolescents. METHODS In this pilot study, resting-state fMRI scans were obtained from 11 adolescent and young women with EAP and 14 healthy female controls. Using a seed-to-voxel approach, we investigated functional connectivity between the anterior insula, medial prefrontal cortex, and the rest of the brain. Furthermore, we explored whether potential functional connectivity differences were correlated with clinical characteristics including disease duration, pain intensity, and different psychosocial factors (pain catastrophizing, fear of pain, functional disability, anxiety, and depression). RESULTS Our findings revealed that patients with EAP demonstrated significantly decreased connectivity between the right anterior insula and two clusters: one in the right cerebellum, and one in the left middle frontal gyrus compared to controls. Additionally, functional connectivity between the right anterior insula and the right cerebellum was positively associated with pain intensity levels. In patients with EAP, brain changes were also correlated with state anxiety and fear of pain. CONCLUSIONS Our results are relevant not only for understanding the brain characteristics underlying EAP at a younger age, but also in enhancing future pain treatment efforts by supporting the involvement of the central nervous system in endometriosis.
Collapse
Affiliation(s)
- Edina Szabo
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Inge Timmers
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands; Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Borsook
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Christine B Sieberg
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Liu B, Yang A, Gao W, Chen Y, Wang Y, Liu X, Lv K, Zhang L, Ma G. Altered cerebral blood flow in patients with spinocerebellar degeneration. Front Neurosci 2022; 16:977145. [PMID: 36177360 PMCID: PMC9513175 DOI: 10.3389/fnins.2022.977145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Spinocerebellar degeneration (SCD) comprises a multitude of disorders with sporadic and hereditary forms, including spinocerebellar ataxia (SCA). Except for progressive cerebellar ataxia and structural atrophy, hemodynamic changes have also been observed in SCD. This study aimed to explore the whole-brain patterns of altered cerebral blood flow (CBF) and its correlations with disease severity and psychological abnormalities in SCD via arterial spin labeling (ASL). METHODS Thirty SCD patients and 30 age- and sex-matched healthy controls (HC) were prospectively recruited and underwent ASL examination on a 3.0T MR scanner. The Scale for Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS) scores were used to evaluate the disease severity in SCD patients. Additionally, the status of anxiety, depression and sleep among all patients were, respectively, evaluated by the Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS) and Self-Rating Scale of Sleep (SRSS). We compared the whole-brain CBF value between SCD group and HC group at the voxel level. Then, the correlation analyses between CBF and disease severity, and psychological abnormalities were performed on SCD group. RESULTS Compared with HC, SCD patients demonstrated decreased CBF value in two clusters (FWE corrected P < 0.05), covering bilateral dentate and fastigial nuclei, bilateral cerebellar lobules I-IV, V and IX, left lobule VI, right lobule VIIIb, lobules IX and X of the vermis in the cerebellar Cluster 1 and the dorsal part of raphe nucleus in the midbrain Cluster 2. The CBF of cerebellar Cluster 1 was negatively correlated with SARA scores (Spearman's rho = -0.374, P = 0.042) and SDS standard scores (Spearman's rho = -0.388, P = 0.034), respectively. And, the CBF of midbrain Cluster 2 also had negative correlations with SARA scores (Spearman's rho = -0.370, P = 0.044) and ICARS scores (Pearson r = -0.464, P = 0.010). CONCLUSION The SCD-related whole-brain CBF changes mainly involved in the cerebellum and the midbrain of brainstem, which are partially overlapped with the related function cerebellar areas of hand, foot and tongue movement. Decreased CBF was related to disease severity and depression status in SCD. Therefore, CBF may be a promising neuroimaging biomarker to reflect the severity of SCD and suggest mental changes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
23
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum.
Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|
24
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
25
|
Ferrari C, Ciricugno A, Urgesi C, Cattaneo Z. Cerebellar contribution to emotional body language perception: a TMS study. Soc Cogn Affect Neurosci 2022; 17:81-90. [PMID: 31588511 PMCID: PMC8824541 DOI: 10.1093/scan/nsz074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Consistent evidence suggests that the cerebellum contributes to the processing of emotional facial expressions. However, it is not yet known whether the cerebellum is recruited when emotions are expressed by body postures or movements, or whether it is recruited differently for positive and negative emotions. In this study, we asked healthy participants to discriminate between body postures (with masked face) expressing emotions of opposite valence (happiness vs anger, Experiment 1), or of the same valence (negative: anger vs sadness; positive: happiness vs surprise, Experiment 2). While performing the task, participants received online transcranial magnetic stimulation (TMS) over a region of the posterior left cerebellum and over two control sites (early visual cortex and vertex). We found that TMS over the cerebellum affected participants' ability to discriminate emotional body postures, but only when one of the emotions was negatively valenced (i.e. anger). These findings suggest that the cerebellar region we stimulated is involved in processing the emotional content conveyed by body postures and gestures. Our findings complement prior evidence on the role of the cerebellum in emotional face processing and have important implications from a clinical perspective, where non-invasive cerebellar stimulation is a promising tool for the treatment of motor, cognitive and affective deficits.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
| | - Andrea Ciricugno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society University of Udine, Udine 33100, Italy
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco 23900, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| |
Collapse
|
26
|
Graph theory analysis of whole brain functional connectivity to assess disturbances associated with suicide attempts in bipolar disorder. Transl Psychiatry 2022; 12:7. [PMID: 35013103 PMCID: PMC8748935 DOI: 10.1038/s41398-021-01767-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Brain targets to lower the high risk of suicide in Bipolar Disorder (BD) are needed. Neuroimaging studies employing analyses dependent on regional assumptions could miss hubs of dysfunction critical to the pathophysiology of suicide behaviors and their prevention. This study applied intrinsic connectivity distribution (ICD), a whole brain graph-theoretical approach, to identify hubs of functional connectivity (FC) disturbances associated with suicide attempts in BD. ICD, from functional magnetic resonance imaging data acquired while performing a task involving implicit emotion regulation processes important in BD and suicide behaviors, was compared across 40 adults with BD with prior suicide attempts (SAs), 49 with BD with no prior attempts (NSAs) and 51 healthy volunteers (HVs). Areas of significant group differences were used as seeds to identify regional FC differences and explore associations with suicide risk-related measures. ICD was significantly lower in SAs than in NSAs and HVs in bilateral ventromedial prefrontal cortex (vmPFC) and right anterior insula (RaIns). Seed connectivity revealed altered FC from vmPFC to bilateral anteromedial orbitofrontal cortex, left ventrolateral PFC (vlPFC) and cerebellum, and from RaIns to right vlPFC and temporopolar cortices. VmPFC and RaIns ICD were negatively associated with suicidal ideation severity, and vmPFC ICD with hopelessness and attempt lethality severity. The findings suggest that SAs with BD have vmPFC and RaIns hubs of dysfunction associated with altered FC to other ventral frontal, temporopolar and cerebellar cortices, and with suicidal ideation, hopelessness, and attempt lethality. These hubs may be targets for novel therapeutics to reduce suicide risk in BD.
Collapse
|
27
|
Topography of Emotions in Cerebellum as Appraised by Functional Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:77-86. [DOI: 10.1007/978-3-030-99550-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Current and Future Perspectives of the Cerebellum in Affective Neuroscience. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:303-313. [DOI: 10.1007/978-3-030-99550-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sorella S, Vellani V, Siugzdaite R, Feraco P, Grecucci A. Structural and functional brain networks of individual differences in trait anger and anger control: An unsupervised machine learning study. Eur J Neurosci 2022; 55:510-527. [PMID: 34797003 PMCID: PMC9303475 DOI: 10.1111/ejn.15537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The ability to experience, use and eventually control anger is crucial to maintain well-being and build healthy relationships. Despite its relevance, the neural mechanisms behind individual differences in experiencing and controlling anger are poorly understood. To elucidate these points, we employed an unsupervised machine learning approach based on independent component analysis to test the hypothesis that specific functional and structural networks are associated with individual differences in trait anger and anger control. Structural and functional resting state images of 71 subjects as well as their scores from the State-Trait Anger Expression Inventory entered the analyses. At a structural level, the concentration of grey matter in a network including ventromedial temporal areas, posterior cingulate, fusiform gyrus and cerebellum was associated with trait anger. The higher the concentration, the higher the proneness to experience anger in daily life due to the greater tendency to orient attention towards aversive events and interpret them with higher hostility. At a functional level, the activity of the default mode network (DMN) was associated with anger control. The higher the DMN temporal frequency, the stronger the exerted control over anger, thus extending previous evidence on the role of the DMN in regulating cognitive and emotional functions in the domain of anger. Taken together, these results show, for the first time, two specialized brain networks for encoding individual differences in trait anger and anger control.
Collapse
Affiliation(s)
- Sara Sorella
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo)University of TrentoRoveretoItaly
| | - Valentina Vellani
- Affective Brain Lab, Department of Experimental PsychologyUniversity College LondonLondonUK
| | | | - Paola Feraco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo)University of TrentoRoveretoItaly,Centre for Medical Sciences (CISMed)University of TrentoTrentoItaly
| |
Collapse
|
30
|
Cerebellar Contribution to Emotional Body Language Perception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:141-153. [DOI: 10.1007/978-3-030-99550-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Altered resting-state neural networks in children and adolescents with functional neurological disorder. NEUROIMAGE: CLINICAL 2022; 35:103110. [PMID: 36002964 PMCID: PMC9421459 DOI: 10.1016/j.nicl.2022.103110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
FND in children commonly involves presentation with multiple neurological symptoms. Children with FND show wide-ranging connectivity changes in resting-state neural networks. Aberrant neural-networks changes are greater in children whose FND includes functional seizures. Subjective distress, autonomic arousal, and HPA dysregulation contribute to network changes. Children with FND (vs controls) report more subjective distress and more ACEs across the lifespan.
Objectives Previous studies with adults suggest that aberrant communication between neural networks underpins functional neurological disorder (FND). The current study adopts a data-driven approach to investigate the extent that functional resting-state networks are disrupted in a pediatric mixed-FND cohort. Methods 31 children with mixed FND and 33 age- and sex-matched healthy controls completed resting-state fMRI scans. Whole-brain independent component analysis (pFWE < 0.05) was then used to identify group differences in resting-state connectivity. Self-report measures included the Depression, Anxiety and Stress Scale (DASS-21) and Early Life Stress Questionnaire (ELSQ). Resting-state heart rate (HR) and cortisol-awakening response (CAR) were available in a subset. Results Children with FND showed wide-ranging connectivity changes in eight independent components corresponding to eight resting-state neural networks: language networks (IC6 and IC1), visual network, frontoparietal network, salience network, dorsal attention network, cerebellar network, and sensorimotor network. Children whose clinical presentation included functional seizures (vs children with other FND symptoms) showed greater connectivity decreases in the frontoparietal and dorsal attentional networks. Subjective distress (total DASS score), autonomic arousal (indexed by HR), and HPA dysregulation (attenuated/reversed CAR) contributed to changes in neural network connectivity. Children with FND (vs controls) reported more subjective distress (total DASS score) and more adverse childhood experiences (ACEs) across their lifespan. Conclusions Children with FND demonstrate changes in resting-state connectivity. Identified network alterations underpin a broad range of functions typically disrupted in children with FND. This study complements the adult literature by suggesting that FND in children and adolescents emerges in the context of their lived experience and that it reflects aberrant communication across neural networks.
Collapse
|
32
|
Klaus J, Schutter DJLG. Non-invasive Brain Stimulation of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:109-121. [DOI: 10.1007/978-3-030-99550-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Cerebellum and Emotion Recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:41-51. [DOI: 10.1007/978-3-030-99550-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Cerebellum, Embodied Emotions, and Psychological Traits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:255-269. [DOI: 10.1007/978-3-030-99550-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. THE CEREBELLUM 2021; 21:482-496. [PMID: 34270081 DOI: 10.1007/s12311-021-01300-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Collapse
|
36
|
Xiang G, Li Q, Xiao M, He L, Chen X, Du X, Liu X, Song S, Wu Y, Chen H. Goal setting and attaining: Neural correlates of positive coping style and hope. Psychophysiology 2021; 58:e13887. [PMID: 34180066 DOI: 10.1111/psyp.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
Trait hope focuses on individual goal-related thoughts and is assumed to be a critical indicator for one's mental health. However, the neurobiological basis of hope and the neurological mechanisms underlying the relationship between positive coping style (PCS) and hope (including the two dimensions of pathway thinking and agency thinking) are still largely unknown. Thus, this study explored the neural basis of trait hope by correlating the regional amplitude of low-frequency fluctuations (ALFF) and resting-state functional connectivity (RSFC) with the self-reported hope of 576 healthy first-year college students underwent RS-fMRI. Our results showed that trait hope was positively associated with PCS. A whole-brain correlation analysis provided early evidence that higher levels of trait hope were associated with decreased ALFF in the left frontal pole cortex (FPC). Additionally, pathway thinking was associated with decreased ALFF in FPC, increased ALFF in the right postcentral gyrus (PCG), decreased RSFC of the left FPC and left posterior cingulate cortex, the left FPC and right middle temporal gyrus, and the right PCG and left cerebellum. Furthermore, mediation analyses demonstrated that the PCG-cerebellum connectivity might link to pathway thinking through PCS and PCS might relate to trait hope through PCG-cerebellum connectivity. Our findings contribute to the neurobiological basis of hope and the neural mechanism underlying the relationship between trait hope and coping style.
Collapse
Affiliation(s)
- Guangcan Xiang
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Qingqing Li
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Mingyue Xiao
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Li He
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Ximei Chen
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Xiaoli Du
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Xinyuan Liu
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Shiqing Song
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Yue Wu
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, Sichuan, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, Sichuan, China
| |
Collapse
|
37
|
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci 2021; 15:599-613. [PMID: 32507876 PMCID: PMC7328022 DOI: 10.1093/scan/nsaa076] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective processing.
Collapse
Affiliation(s)
- Jordan E Pierce
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
38
|
Increased Global-Brain Functional Connectivity Is Associated with Dyslipidemia and Cognitive Impairment in First-Episode, Drug-Naive Patients with Bipolar Disorder. Neural Plast 2021; 2021:5560453. [PMID: 34194487 PMCID: PMC8203345 DOI: 10.1155/2021/5560453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 05/22/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Previous researches have demonstrated that abnormal functional connectivity (FC) is associated with the pathophysiology of bipolar disorder (BD). However, inconsistent results were obtained due to different selections of regions of interest in previous researches. This study is aimed at examining voxel-wise brain-wide functional connectivity (FC) alterations in the first-episode, drug-naive patient with BD in an unbiased way. Methods A total of 35 patients with BD and 37 age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). Global-brain FC (GFC) was applied to analyze the image data. Support vector machine (SVM) was adopted to probe whether GFC abnormalities could be used to identify the patients from the controls. Results Patients with BD exhibited increased GFC in the left inferior frontal gyrus (LIFG), pars triangularis and left precuneus (PCu)/superior occipital gyrus (SOG). The left PCu belongs to the default mode network (DMN). Furthermore, increased GFC in the LIFG, pars triangularis was positively correlated with the triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and negatively correlated with the scores of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) coding test and Stroop color. Increased GFC values in the left PCu/SOG can be applied to discriminate patients from controls with preferable sensitivity (80.00%), specificity (75.68%), and accuracy (77.78%). Conclusions This study found increased GFC in the brain regions of DMN; LIFG, pars triangularis; and LSOG, which was associated with dyslipidemia and cognitive impairment in patients with BD. Moreover, increased GFC values in the left PCu/SOG may be utilized as a potential biomarker to differentiate patients with BD from controls.
Collapse
|
39
|
Thomasson M, Benis D, Saj A, Voruz P, Ronchi R, Grandjean D, Assal F, Péron J. Sensory contribution to vocal emotion deficit in patients with cerebellar stroke. Neuroimage Clin 2021; 31:102690. [PMID: 34000647 PMCID: PMC8138671 DOI: 10.1016/j.nicl.2021.102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/11/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
In recent years, there has been increasing evidence of cerebellar involvement in emotion processing. Difficulties in the recognition of emotion from voices (i.e., emotional prosody) have been observed following cerebellar stroke. However, the interplay between sensory and higher-order cognitive dysfunction in these deficits, as well as possible hemispheric specialization for emotional prosody processing, has yet to be elucidated. We investigated the emotional prosody recognition performances of patients with right versus left cerebellar lesions, as well as of matched controls, entering the acoustic features of the stimuli in our statistical model. We also explored the cerebellar lesion-behavior relationship, using voxel-based lesion-symptom mapping. Results revealed impairment of vocal emotion recognition in both patient subgroups, particularly for neutral or negative prosody, with a higher number of misattributions in patients with right-hemispheric stroke. Voxel-based lesion-symptom mapping showed that some emotional misattributions correlated with lesions in the right Lobules VIIb and VIII and right Crus I and II. Furthermore, a significant proportion of the variance in this misattribution was explained by acoustic features such as pitch, loudness, and spectral aspects. These results point to bilateral posterior cerebellar involvement in both the sensory and cognitive processing of emotions.
Collapse
Affiliation(s)
- Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205 Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland; Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Damien Benis
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205 Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Arnaud Saj
- Department of Psychology, University of Montreal, 2900 Montreal, QC, Canada
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205 Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Roberta Ronchi
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, 1205 Geneva, Switzerland; Laboratory of Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, University of Geneva, 1205 Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Frédéric Assal
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, 1205 Geneva, Switzerland; Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205 Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland; Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
40
|
Wei Q, Ji Y, Bai T, Zu M, Guo Y, Mo Y, Ji G, Wang K, Tian Y. Enhanced cerebro-cerebellar functional connectivity reverses cognitive impairment following electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2021; 15:798-806. [PMID: 32361944 DOI: 10.1007/s11682-020-00290-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electroconvulsive therapy (ECT), a rapidly acting and effective treatment for major depressive disorder (MDD), is frequently accompanied by cognitive impairment. Recent studies have documented that ECT reorganizes dysregulated inter/intra- connected cerebral networks, including the affective network, the cognitive control network(CCN) and default mode network (DMN).Moreover, cerebellum is thought to play an important role in emotion regulation and cognitive processing. However, little is known about the relationship between cerebro-cerebellar connectivity alterations following ECT and antidepressant effects or cognitive impairment. We performed seed-based resting-state functional connectivity (RSFC) analyses in 28 MDD patients receiving ECT and 20 healthy controls to identify cerebro-cerebellar connectivity differences related to MDD and changes induced by ECT. Six seed regions (three per hemisphere) in the cerebrum were selected for RSFC, corresponding to the affective network, CCN and DMN, to establish cerebro-cerebellar functional connectivity with cerebellum. MDD patients showed increased RSFC between left sgACC and left cerebellar lobule VI after ECT. Ggranger causality analyses (GCA) identified the causal interaction is from left cerebellar lobule VI to left sgACC. Furthermore, increased effective connectivity from left cerebellar lobule VI to left sgACC exhibited positively correlated with the change in verbal fluency test (VFT) score following ECT (r = 0.433, p = 0.039). Our findings indicate that the enhanced cerebro-cerebellar functional connectivity from left lobule VI to left sgACC may ameliorate cognitive impairment induced by ECT. This study identifies a potential neural pathway for mitigation of cognitive impairment following ECT.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Meidan Zu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuanyuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuting Mo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Gongjun Ji
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| |
Collapse
|
41
|
Lannoy S, Dricot L, Benzerouk F, Portefaix C, Barrière S, Quaglino V, Naassila M, Kaladjian A, Gierski F. Neural Responses to the Implicit Processing of Emotional Facial Expressions in Binge Drinking. Alcohol Alcohol 2021; 56:166-174. [PMID: 33075804 DOI: 10.1093/alcalc/agaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023] Open
Abstract
AIMS Emotional processing is a crucial ability in human and impairments in the processing of emotions are considered as transdiagnostic processes in psychopathology. In alcohol use disorder, numerous studies have investigated emotional processing and showed emotional deficits related to the perpetuation of alcohol use. Recent studies have also explored this topic in binge drinking, but few studies are available. In this paper, we explored whether emotional difficulties in binge drinking may be extended to implicit emotion processing. METHODS We compared 39 binge drinkers (BD) and 40 non-binge drinkers who performed a gender categorization task while faces represented emotional expressions of anger, fear, happiness and sadness. Emotional brain responses were assessed thanks to functional magnetic resonance imaging. Emotional versus non-emotional conditions were first contrasted in the whole sample and groups were then compared. RESULTS Emotional condition led to differential activations than non-emotional condition, supporting the validity of the paradigm. Regarding group comparisons, BD exhibited higher activations in the left posterior cerebellum (anger processing) and the right anterior cingulate (fear processing) as well as lower activations in the left insula (happiness), the right post-central gyrus, the right cingulate gyrus and the right medial frontal gyrus (sadness processing). CONCLUSIONS Beyond emotional identification, BD presented differential brain responses following the implicit processing of emotions. Emotional difficulties in binge drinking might be related to a more automatic/unconscious processing of emotions.
Collapse
Affiliation(s)
- Séverine Lannoy
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA.,Louvain Experimental Psychopathology (LEP), Psychological Science Research Institute, Université catholique de Louvain, 10 Place Cardinal Mercier, 1348 Louvain-la-Neuve, Belgium.,Cognition Health and Society Laboratory (EA 6291), Université de Reims Champagne-Ardenne, 57 rue Pierre Taittinger, 51571 Reims, France
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain, 81 Avenue E Mounier, 1200 Brussels, Belgium
| | - Farid Benzerouk
- Cognition Health and Society Laboratory (EA 6291), Université de Reims Champagne-Ardenne, 57 rue Pierre Taittinger, 51571 Reims, France.,Department of Psychiatry, CHU Reims, EPSM Marne, 8 rue Roger Aubry, 51100 Reims, France
| | - Christophe Portefaix
- Department of Medical Imaging, Maison Blanche Hospital, Reims University Hospital, 45 Avenue Cognacq Jay, 51100 Reims, France.,CReSTIC Laboratory (EA 3804), University of Reims Champagne-Ardenne, Campus Moulin de la Housse, Chemin des Rouliers, 51680 Reims, France
| | - Sarah Barrière
- Department of Psychiatry, CHU Reims, EPSM Marne, 8 rue Roger Aubry, 51100 Reims, France
| | - Véronique Quaglino
- Laboratoire CRP-CPO (EA 7273), Université de Picardie Jules Verne, Chemin du Thil, 80025 Amiens, France
| | - Mickaël Naassila
- INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| | - Arthur Kaladjian
- Cognition Health and Society Laboratory (EA 6291), Université de Reims Champagne-Ardenne, 57 rue Pierre Taittinger, 51571 Reims, France.,Department of Psychiatry, CHU Reims, EPSM Marne, 8 rue Roger Aubry, 51100 Reims, France
| | - Fabien Gierski
- Cognition Health and Society Laboratory (EA 6291), Université de Reims Champagne-Ardenne, 57 rue Pierre Taittinger, 51571 Reims, France.,Department of Psychiatry, CHU Reims, EPSM Marne, 8 rue Roger Aubry, 51100 Reims, France.,INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, Avenue Laennec, 80054 Amiens, France
| |
Collapse
|
42
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|
43
|
Boyraz RK, Kirpinar I, Yilmaz O, Özyurt O, Kiliçarslan T, Aralasmak A. A Treatment-Response Comparison Study of Resting-State Functional Magnetic Resonance Imaging Between Standard Treatment of SSRI and Standard Treatment of SSRI Plus Non-dominant Hand-Writing Task in Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:698954. [PMID: 34539460 PMCID: PMC8446543 DOI: 10.3389/fpsyt.2021.698954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Researches have recently shifted from functional/structural imaging studies to functional connectivity (FC) studies in major depressive disorder (MDD). We aimed to compare treatment response of two treatment groups before and after treatment, in terms of both with psychiatric evaluation scales and resting-state functional connectivity (RSFC) changes in order to objectively demonstrate the possible contribution of the non-dominant hand-writing exercise (NHE) effect on depression treatment. Methods: A total of 26 patients who were right-handed women with similar sociodemographic characteristics were enrolled. Their pre-treatment resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychiatric tests were recorded, and then, patients were divided into two groups randomly. A standard treatment (ST) (fix sertraline 50 mg/day) was given to both groups. One randomly selected group was given the NHE in addition to the ST. After 8 weeks of treatment, all patients were reevaluated with rs-fMRI and neuropsychiatric tests. Pre- and post-treatment FC changes within the groups and post-treatment connectivity changes between groups were evaluated. Results: Post-treatment neuropsychiatric tests were significantly different in both groups. Post-treatment, two brain regions' connectivity changed in the ST group, whereas 10 brain regions' connectivity changed significantly in the ST + NHE group. When treatment groups were compared with each other after the treatment, the FC of 13 regions changed in the ST + NHE group compared to the ST group (p-unc/p-PFD <0.05). The density of connectivity changes in the frontal and limbic regions, especially connectivities shown to change in depression treatment, in the ST + NHE group indicates a positive contribution to depression treatment, which is also supported by neuropsychiatric scale changes. Conclusion: NHE, which we developed with inspiration from the Eye Movement Desensitization and Reprocessing (EMDR) method, showed significantly more connecitivity changes related with MDD treatment. Beyond offering a new additional treatment method, our study will also contribute to the current literature with our efforts to evaluate all brain regions and networks that may be related to MDD and its treatment together, without being limited to a few regions. Trial Registration: The rs-fMRI and treatment registers were recorded in the BizMed system, which is the patient registration system of Bezmialem Vakif University Medicine Faculty, under the BAP support project approval code and the registration number 3.2018/8.
Collapse
Affiliation(s)
- Rabia Kevser Boyraz
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Ismet Kirpinar
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Onur Yilmaz
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Onur Özyurt
- Bogaziçi University, Bogaziçi Engineering Institute, Istanbul, Turkey
| | - Tezer Kiliçarslan
- Bezmialem VAKIF University, Department of Psychiatry, School of Medicine, Istanbul, Turkey
| | - Ayse Aralasmak
- Bezmialem Vakıf University, Department of Radiology, School of Medicine, Istanbul, Turkey
| |
Collapse
|
44
|
Arioli M, Basso G, Poggi P, Canessa N. Fronto-temporal brain activity and connectivity track implicit attention to positive and negative social words in a novel socio-emotional Stroop task. Neuroimage 2020; 226:117580. [PMID: 33221447 DOI: 10.1016/j.neuroimage.2020.117580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Previous inconsistencies on the effects of implicitly processing positively - vs. negatively - connotated emotional words might reflect the influence of uncontrolled psycholinguistic dimensions, and/or social facets inherent in putative "emotional" stimuli. Based on the relevance of social features in semantic cognition, we developed a socio-emotional Stroop task to assess the influence of social vs. individual (non-social) emotional content, besides negative vs. positive valence, on implicit word processing. The effect of these variables was evaluated in terms of performance and RTs, alongside associated brain activity/connectivity. We matched conditions for several psycholinguistic variables, and assessed a modulation of brain activity/connectivity by trial-wise RT, to characterize the maximum of condition- and subject-specific variability. RTs were tracked by insular and anterior cingulate activations likely reflecting implicit attention to stimuli, interfering with task-performance based on condition-specific processing of their subjective salience. Slower performance for negative than neutral/positive words was tracked by left-hemispheric structures processing negative stimuli and emotions, such as fronto-insular cortex, while the lack of specific activations for positively-connotated words supported their marginal facilitatory effect. The speeding/slowing effects of processing positive/negative individual emotional stimuli were enhanced by social words, reflecting in specific activations of the right anterior temporal and orbitofrontal cortex, respectively. RTs to social positive and negative words modulated connectivity from these regions to fronto-striatal and sensorimotor structures, respectively, likely promoting approach vs. avoidance dispositions shaping their facilitatory vs. inhibitory effect. These results might help assessing the neural correlates of impaired social cognition and emotional regulation, and the effects of rehabilitative interventions.
Collapse
Affiliation(s)
- Maria Arioli
- NEtS center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Gianpaolo Basso
- Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy; University of Milano-Bicocca, Milan 20126, Italy
| | - Paolo Poggi
- Radiology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Nicola Canessa
- NEtS center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy.
| |
Collapse
|
45
|
Klaus J, Schutter DJLG. Functional topography of anger and aggression in the human cerebellum. Neuroimage 2020; 226:117582. [PMID: 33221449 DOI: 10.1016/j.neuroimage.2020.117582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
New insights into the functional neuroanatomic correlates of emotions point toward the involvement of the cerebellum in anger and aggression. To identify cerebellar regions commonly activated in tasks examining the experience of anger and threat as well as exerting an aggressive response, two coordinate-based activation likelihood estimation meta-analyses reporting a total of 57 cerebellar activation foci from 819 participants were performed. For anger processing (18 studies), results showed significant clusters in the bilateral posterior cerebellum, overlapping with results from previous meta-analyses on emotion processing, and implying functional connectivity to cognitive, limbic, and social canonic networks in the cerebral cortex. By contrast, active aggression expression (10 studies) was associated with significant clusters in more anterior regions of the cerebellum, overlapping with cerebellar somatosensory and motor regions and displaying functional connectivity with the somatomotor and default mode network. This study not only strengthens the notion that the cerebellum is involved in emotion processing, but also provides the first quantitative evidence for distinct cerebellar functional activation patterns related to anger and aggression.
Collapse
Affiliation(s)
- Jana Klaus
- Utrecht University, Helmholtz Institute, Department of Experimental Psychology The Netherlands
| | - Dennis J L G Schutter
- Utrecht University, Helmholtz Institute, Department of Experimental Psychology The Netherlands.
| |
Collapse
|
46
|
MacIlvane N, Fede SJ, Pearson EE, Diazgranados N, Momenan R. A Distinct Neurophenotype of Fearful Face Processing in Alcohol Use Disorder With and Without Comorbid Anxiety. Alcohol Clin Exp Res 2020; 44:2212-2224. [PMID: 32981080 DOI: 10.1111/acer.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) can present with comorbid anxiety symptoms and often have deficits in emotional processing. Previous research suggests brain response is altered during facial affect recognition tasks, especially in limbic areas, due to either AUD or anxiety symptomology; however, the impact of both AUD and clinically significant anxiety symptoms during these tasks has not yet been examined. METHODS In this study, we investigated neural activation differences during an emotional face-matching task. Participants (N = 232) underwent fMRI scanning, as part of a larger study. Three groups were investigated: individuals with diagnosed AUD and elevated anxiety traits (AUD + ANX, n = 90), individuals with diagnosed AUD but non-clinically significant levels of anxiety (AUD-ANX, n = 39), and healthy controls (HC, n = 103). RESULTS Our results illustrate distinct neurophenotypes of AUD, where individuals with comorbid anxiety symptomology have blunted emotional face processing while those with singular AUD are hyperresponsive. CONCLUSIONS This suggests AUD with anxiety symptomology may have a unique neurobiological underpinning, and treatment and intervention should be tailored to individual constellations of symptoms.
Collapse
Affiliation(s)
- Nicole MacIlvane
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Samantha J Fede
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma E Pearson
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Diazgranados
- Office of Clinical Director (ND), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Reza Momenan
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Ferrari C, Fiori F, Suchan B, Plow EB, Cattaneo Z. TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. Eur J Neurosci 2020; 53:1029-1039. [PMID: 32860302 DOI: 10.1111/ejn.14953] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
Evidence suggests that the posterior cerebellum is involved in emotional processing. Specific mechanisms by which the cerebellum contributes to the perception of and reaction to the emotional state of others are not well-known. It is likely that perceived emotions trigger anticipatory/preparatory motor changes. However, the extent to which the cerebellum modulates the activity of the motor cortex to contribute to emotional processing has not been directly investigated. In this study, we assessed whether the activity of the posterior cerebellum influences the modulation of motor cortical excitability in response to emotional stimuli. To this end, we transiently disrupted the neural activity of the left posterior cerebellum using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and examined its effect on motor cortical excitability witnessed during emotional face processing (in comparison to the effects of sham rTMS). Motor excitability was measured as TMS-based motor evoked potentials (MEPs) recorded from bilateral first dorsal interosseous (FDI) muscles during the viewing of negative emotional (i.e. fearful) and neutral facial expressions. In line with previous evidence, we found that MEP amplitude was increased during the viewing of fearful compared to neutral faces. Critically, when left posterior cerebellar activity was transiently inhibited with 1 Hz rTMS, we observed a reduction in amplitude of MEPs recorded from the contralateral (right) motor cortex during the viewing of emotional (but not neutral) faces. In turn, inhibition of the left posterior cerebellum did not affect the amplitude of MEPs recorded from the ipsilateral motor cortex. Our findings suggest that the posterolateral (left) cerebellum modulates motor cortical response to negative emotional stimuli and may serve as an interface between limbic, cognitive, and motor systems.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Francesca Fiori
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Boris Suchan
- Institute of Cognitive Neuroscience, Clinical Neuropsychology, Neuropsychological Therapy Centre, Ruhr University, Bochum, Germany
| | - Ela B Plow
- Department of Biomedical Engineering and Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
48
|
Reisch LM, Wegrzyn M, Woermann FG, Bien CG, Kissler J. Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Hum Brain Mapp 2020; 41:4332-4354. [PMID: 32633448 PMCID: PMC7502837 DOI: 10.1002/hbm.25128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Negative visual stimuli have been found to elicit stronger brain activation than do neutral stimuli. Such emotion effects have been shown for pictures, faces, and words alike, but the literature suggests stimulus-specific differences regarding locus and lateralization of the activity. In the current functional magnetic resonance imaging study, we directly compared brain responses to passively viewed negative and neutral pictures of complex scenes, faces, and words (nouns) in 43 healthy participants (21 males) varying in age and demographic background. Both negative pictures and faces activated the extrastriate visual cortices of both hemispheres more strongly than neutral ones, but effects were larger and extended more dorsally for pictures, whereas negative faces additionally activated the superior temporal sulci. Negative words differentially activated typical higher-level language processing areas such as the left inferior frontal and angular gyrus. There were small emotion effects in the amygdala for faces and words, which were both lateralized to the left hemisphere. Although pictures elicited overall the strongest amygdala activity, amygdala response to negative pictures was not significantly stronger than to neutral ones. Across stimulus types, emotion effects converged in the left anterior insula. No gender effects were apparent, but age had a small, stimulus-specific impact on emotion processing. Our study specifies similarities and differences in effects of negative emotional content on the processing of different types of stimuli, indicating that brain response to negative stimuli is specifically enhanced in areas involved in processing of the respective stimulus type in general and converges across stimuli in the left anterior insula.
Collapse
Affiliation(s)
- Lea Marie Reisch
- Department of Psychology, University of Bielefeld, Bielefeld, Germany.,Epilepsy Centre Bethel, Krankenhaus Mara, Bielefeld, Germany
| | - Martin Wegrzyn
- Department of Psychology, University of Bielefeld, Bielefeld, Germany
| | | | | | - Johanna Kissler
- Department of Psychology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
49
|
Bogoian HR, King TZ, Turner JA, Semmel ES, Dotson VM. Linking depressive symptom dimensions to cerebellar subregion volumes in later life. Transl Psychiatry 2020; 10:201. [PMID: 32561707 PMCID: PMC7305200 DOI: 10.1038/s41398-020-00883-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
The present study examined the relationship between subthreshold depressive symptoms and gray matter volume in subregions of the posterior cerebellum. Structural magnetic resonance imaging data from 38 adults aged 51 to 80 years were analyzed along with participants' responses to the Center for Epidemiologic Studies Depression Scale. Subscale scores for depressed mood, somatic symptoms, and lack of positive affect were calculated, and multiple regression analyses were used to examine the relationship between symptom dimensions and cerebellar volumes. Greater total depressive symptoms and greater somatic symptoms of depression were significantly related to larger volumes of vermis VI, a region within the salience network, which is altered in depression. Exploratory analyses revealed that higher scores on the lack of positive affect subscale were related to larger vermis VIII volumes. These results support that depressive symptom profiles have unique relationships within the cerebellum that may be important as the field move towards targeted treatment approaches for depression.
Collapse
Affiliation(s)
- Hannah R. Bogoian
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA
| | - Tricia Z. King
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Neuroscience Institute, Georgia State University, Atlanta, GA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Neuroscience Institute, Georgia State University, Atlanta, GA USA
| | - Eric S. Semmel
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Neuroscience Institute, Georgia State University, Atlanta, GA USA
| | - Vonetta M. Dotson
- grid.256304.60000 0004 1936 7400Department of Psychology, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Neuroscience Institute, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Gerontology Institute, Georgia State University, Atlanta, GA USA
| |
Collapse
|
50
|
Kim S, Kim YW, Jeon H, Im CH, Lee SH. Altered Cortical Thickness-Based Individualized Structural Covariance Networks in Patients with Schizophrenia and Bipolar Disorder. J Clin Med 2020; 9:jcm9061846. [PMID: 32545747 PMCID: PMC7356298 DOI: 10.3390/jcm9061846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Structural covariance is described as coordinated variation in brain morphological features, such as cortical thickness and volume, among brain structures functionally or anatomically interconnected to one another. Structural covariance networks, based on graph theory, have been studied in mental disorders. This analysis can help in understanding the brain mechanisms of schizophrenia and bipolar disorder. We investigated cortical thickness-based individualized structural covariance networks in patients with schizophrenia and bipolar disorder. T1-weighted magnetic resonance images were obtained from 39 patients with schizophrenia, 37 patients with bipolar disorder type I, and 32 healthy controls, and cortical thickness was analyzed via a surface-based morphometry analysis. The structural covariance of cortical thickness was calculated at the individual level, and covariance networks were analyzed based on graph theoretical indices: strength, clustering coefficient (CC), path length (PL) and efficiency. At the global level, both patient groups showed decreased strength, CC and efficiency, and increased PL, compared to healthy controls. In bipolar disorder, we found intermediate network measures among the groups. At the nodal level, schizophrenia patients showed decreased CCs in the left suborbital sulcus and the right superior frontal sulcus, compared to bipolar disorder patients. In addition, patient groups showed decreased CCs in the right insular cortex and the left superior occipital gyrus. Global-level network indices, including strength, CCs and efficiency, positively correlated, while PL negatively correlated, with the positive symptoms of the Positive and Negative Syndrome Scale for patients with schizophrenia. The nodal-level CC of the right insular cortex positively correlated with the positive symptoms of schizophrenia, while that of the left superior occipital gyrus positively correlated with the Young Mania Rating Scale scores for bipolar disorder. Altered cortical structural networks were revealed in patients, and particularly, the prefrontal regions were more altered in schizophrenia. Furthermore, altered cortical structural networks in both patient groups correlated with core pathological symptoms, indicating that the insular cortex is more vulnerable in schizophrenia, and the superior occipital gyrus is more vulnerable in bipolar disorder. Our individualized structural covariance network indices might be promising biomarkers for the evaluation of patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yong-Wook Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea; (Y.-W.K.); (C.-H.I.)
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea; (Y.-W.K.); (C.-H.I.)
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang 411-706, Korea;
- Department of Psychiatry, Ilsan Paik Hospital, College of Medicine, Inje University, Juhwa-ro 170, Ilsanseo-Gu, Goyang 411-706, Korea
- Correspondence: ; Tel.: +82-31-910-7260; Fax: +82-31-910-7268
| |
Collapse
|