1
|
Ren Z, Wang X, Angelov M, De Zeeuw CI, Gao Z. Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing. Nat Commun 2025; 16:612. [PMID: 39800729 PMCID: PMC11725584 DOI: 10.1038/s41467-025-55884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC). When mice were trained for either DEC or TEC and subsequently subjected to a new paradigm, their conditioned responses (CRs) adapted virtually instantaneously. Changes in the activity of the IpN neurons related to CR timing were prominent during DEC-to-TEC adaptation, but less so during TEC-to-DEC adaptation. In contrast, mPFC neurons could rapidly alter their modulation patterns during both adaptation paradigms. Accordingly, silencing the mPFC completely blocked the adaptation of CR timing. These results illustrate how cerebral and cerebellar mechanisms may play different roles during adaptive control of associative motor timing.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
- Department of Neurosurgery, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Li R, Li Q, Chu X, Li L, Li X, Li J, Yang Z, Xu M, Luo C, Zhang K. Role of cerebellar cortex in associative learning and memory in guinea pigs. Open Life Sci 2022; 17:1208-1216. [PMID: 36185409 PMCID: PMC9482424 DOI: 10.1515/biol-2022-0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Time-related cognitive function refers to the capacity of the brain to store, extract, and process specific information. Previous studies demonstrated that the cerebellar cortex participates in advanced cognitive functions, but the role of the cerebellar cortex in cognitive functions is unclear. We established a behavioral model using classical eyeblink conditioning to study the role of the cerebellar cortex in associative learning and memory and the underlying mechanisms. We performed an investigation to determine whether eyeblink conditioning could be established by placing the stimulating electrode in the middle cerebellar peduncle. Behavior training was performed using a microcurrent pulse as a conditioned stimulus to stimulate the middle cerebellar peduncle and corneal blow as an unconditioned stimulus. After 10 consecutive days of training, a conditioned response was successfully achieved in the Delay, Trace-200-ms, and Trace-300-ms groups of guinea pigs, with acquisition rates of >60%, but the Trace-400-ms and control groups did not achieve a conditioned stimulus-related blink conditioned response. It could be a good model for studying the function of the cerebellum during the establishment of eyeblink conditioning.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Qi Li
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China
| | - Lan Li
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Xiaoyi Li
- Department of Neuroelectrophysiology, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Juan Li
- Department of Using Quality Management, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Mingjing Xu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Changlu Luo
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| |
Collapse
|
3
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
4
|
Caligiore D, Mirino P. How the Cerebellum and Prefrontal Cortex Cooperate During Trace Eyeblinking Conditioning. Int J Neural Syst 2020; 30:2050041. [PMID: 32618205 DOI: 10.1142/s0129065720500410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several data have demonstrated that during the widely used experimental paradigm for studying associative learning, trace eye blinking conditioning (TEBC), there is a strong interaction between cerebellum and medial prefrontal cortex (mPFC). Despite this evidence, the neural mechanisms underlying this interaction are still not clear. Here, we propose a neurophysiologically plausible computational model to address this issue. The model is constrained on the basis of two critical anatomo-physiological features: (i) the cerebello-cortical organization through two circuits, respectively, targeting M1 and mPFC; (ii) the different timing in the plasticity mechanisms of these parallel circuits produced by the granule cells time sensitivity according to which different subpopulations are active at different moments during conditioned stimuli. The computer simulations run with the model suggest that these features are critical to understand how the cooperation between cerebellum and mPFC supports motor areas during TEBC. In particular, a greater trace interval produces greater plasticity changes at the slow path synapses involving mPFC with respect to plasticity changes at the fast path involving M1. As a consequence, the greater is the trace interval, the stronger is the mPFC involvement. The model has been validated by reproducing data collected through recent real mice experiments.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, Rome, 00185, Italy
| | - Pierandrea Mirino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, Rome, 00185, Italy
| |
Collapse
|
5
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
6
|
A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice. Sci Rep 2019; 9:1857. [PMID: 30755637 PMCID: PMC6372581 DOI: 10.1038/s41598-018-37885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
A growing pool of transgenic mice expressing Cre-recombinases, together with Cre-dependent opsin viruses, provide good tools to manipulate specific neural circuits related to eyeblink conditioning (EBC). However, currently available methods do not enable to get fast and precise readout of optogenetic control when the freely-moving mice are receiving EBC training. In the current study, we describe a laser diode (LD)-optical fiber (OF)-Tetrode assembly that allows for simultaneous multiple units recording and optical stimulation. Since the numbers of various cables that require to be connected are minimized, the LD-OF-Tetrode assembly can be combined with CS-US delivery apparatus for revealing the effects of optical stimulation on EBC in freely- moving mice. Moreover, this combination of techniques can be utilized to optogenetically intervene in hippocampal neuronal activities during the post-conditioning sleep in a closed-loop manner. This novel device thus enhances our ability to explore how specific neuronal assembly contributes to associative motor memory in vivo.
Collapse
|
7
|
Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. THE CEREBELLUM 2019; 18:67-75. [PMID: 29916048 DOI: 10.1007/s12311-018-0956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Pezze MA, Marshall HJ, Cassaday HJ. Infusions of scopolamine in dorsal hippocampus reduce anticipatory responding in an appetitive trace conditioning procedure. Brain Behav 2018; 8:e01147. [PMID: 30378776 PMCID: PMC6305963 DOI: 10.1002/brb3.1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Trace conditioning is impaired by lesions to dorsal hippocampus, as well as by treatment with the muscarinic acetylcholine antagonist scopolamine. However, the role of muscarinic receptors within hippocampus has received little attention. METHODS The present study examined the effects of intra-hippocampal infusion of scopolamine (30 µg/side) in an appetitive (2 vs. 10 s) trace conditioning procedure using sucrose pellets as the unconditioned stimulus (US). Locomotor activity (LMA) was examined in a different apparatus. RESULTS Intra-hippocampal scopolamine reduced responding to the 2 s trace conditioned stimulus (CS). Intra-hippocampal scopolamine similarly depressed responding within the inter-stimulus interval (ISI) at both 2 and 10 s trace intervals, but there was no such effect in the inter-trial interval. There was also some overall reduction in responding when the US was delivered; significant at the 10 s but not at the 2 s trace interval. A similar pattern of results to that seen in response to the CS during acquisition was shown drug-free (in the 5 s post-CS) in the extinction tests of conditioned responding. LMA was increased under scopolamine. CONCLUSIONS The results suggest that nonspecific changes in activity or motivation to respond for the US cannot explain the reduction in trace conditioning as measured by reduced CS responding and in the ISI. Rather, the findings of the present study point to the importance of associative aspects of the task in determining its sensitivity to the effects of scopolamine, suggesting that muscarinic receptors in the hippocampus are important modulators of short-term working memory.
Collapse
Affiliation(s)
- Marie A. Pezze
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | | |
Collapse
|
9
|
Spontaneous recovery of conditioned eyeblink responses is associated with transiently decreased cerebellar theta activity in guinea pigs. Behav Brain Res 2018; 359:457-466. [PMID: 30468789 DOI: 10.1016/j.bbr.2018.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Behavioral studies have demonstrated that extinguished conditioned eyeblink responses (CR) can spontaneously recover after extinction. However, the neural mechanisms underlying this process are still unclear. We have shown that spontaneous cerebellar theta activity was predictive of subsequent CR extinction. Here, we sought to further evaluate the association between spontaneous recovery and cerebellar theta activity in behaving guinea pigs. It was found that trace conditioning training significantly diminished the degree of spontaneous recovery during extinction sessions as compared to delay training. Moreover, by recording local field potential in the cerebellum of guinea pigs undergoing an eyeblink conditioning extinction task, we found that spontaneous recovery of delay-paradigm CRs was associated with transiently decreased CS-evoked theta activity in the cerebellum. These findings suggest that decreased CS-evoked cerebellar theta activity may contribute to the neural process that is important for the spontaneous recovery of extinguished motor memory. Future studies are needed to clarify the neural mechanism underlying changed cerebellar theta activity during altered behavioral contingencies.
Collapse
|
10
|
Pezze MA, Marshall HJ, Cassaday HJ. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex. J Neurosci 2017; 37:6289-6298. [PMID: 28559376 PMCID: PMC5490064 DOI: 10.1523/jneurosci.3308-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity.SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in "trace conditioning." The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a 2 s trace interval. However, scopolamine was without effect in the aversive procedure, revealing the importance of procedural differences to the demonstration of the drug effect. The finding that blockade of muscarinic receptors in mPFC impaired trace conditioning shows that these receptors are critical modulators of short-term working memory.
Collapse
Affiliation(s)
- Marie-Astrid Pezze
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Hayley J Marshall
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain. J Neurosci 2017; 37:7305-7317. [PMID: 28652410 DOI: 10.1523/jneurosci.0571-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain.SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC function. The results suggest that at least some FX-specific neurological defects can be rescued in the adult FX brain after development.
Collapse
|
12
|
Prefrontal Single-Neuron Responses after Changes in Task Contingencies during Trace Eyeblink Conditioning in Rabbits. eNeuro 2016; 3:eN-NWR-0057-16. [PMID: 27517083 PMCID: PMC4947975 DOI: 10.1523/eneuro.0057-16.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 11/23/2022] Open
Abstract
A number of studies indicate that the medial prefrontal cortex (mPFC) plays a role in mediating the expression of behavioral responses during tasks that require flexible changes in behavior. During trace eyeblink conditioning, evidence suggests that the mPFC provides the cerebellum with a persistent input to bridge the temporal gap between conditioned and unconditioned stimuli. Therefore, the mPFC is in a position to directly mediate the expression of trace conditioned responses. However, it is unknown whether persistent neural responses are associated with the flexible expression of behavior when task contingencies are changed during trace eyeblink conditioning. To investigate this, single-unit activity was recorded in the mPFC of rabbits during extinction and reacquisition of trace eyeblink conditioning, and during training to a different conditional stimulus. Persistent responses remained unchanged after full extinction, and also did not change during reacquisition training. During training to a different tone, however, the generalization of persistent responses to the new stimulus was associated with an animal’s performance—when persistent responses generalized to the new tone, performance was high (>50% response rate). When persistent responses decreased to baseline rates, performance was poor (<50% response rate). The data suggest that persistent mPFC responses do not appear to mediate flexible changes in the expression of the original learning, but do appear to play a role in the generalization of that learning when the task is modified.
Collapse
|
13
|
Chen H, Wang YJ, Yang L, Sui JF, Hu ZA, Hu B. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Sci Rep 2016; 6:20960. [PMID: 26879632 PMCID: PMC4754690 DOI: 10.1038/srep20960] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0-12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhi-an Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
14
|
Pezze MA, Marshall HJ, Domonkos A, Cassaday HJ. Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:60-7. [PMID: 26343307 PMCID: PMC4681364 DOI: 10.1016/j.pnpbp.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 01/21/2023]
Abstract
The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05μg/side) or D1 antagonist SCH23390 (0.5μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning.
Collapse
Affiliation(s)
- M A Pezze
- School of Psychology, University of Nottingham, United Kingdom
| | - H J Marshall
- School of Psychology, University of Nottingham, United Kingdom
| | - A Domonkos
- School of Psychology, University of Nottingham, United Kingdom
| | - H J Cassaday
- School of Psychology, University of Nottingham, United Kingdom.
| |
Collapse
|
15
|
Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Trace Eyeblink Conditioning in Mice Is Dependent upon the Dorsal Medial Prefrontal Cortex, Cerebellum, and Amygdala: Behavioral Characterization and Functional Circuitry. eNeuro 2015; 2:eN-NWR-0051-14. [PMID: 26464998 PMCID: PMC4596016 DOI: 10.1523/eneuro.0051-14.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022] Open
Abstract
Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum.
Collapse
|
17
|
Neuroplasticity subserving the operation of brain-machine interfaces. Neurobiol Dis 2015; 83:161-71. [PMID: 25968934 DOI: 10.1016/j.nbd.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023] Open
Abstract
Neuroplasticity is key to the operation of brain machine interfaces (BMIs)-a direct communication pathway between the brain and a man-made computing device. Whereas exogenous BMIs that associate volitional control of brain activity with neurofeedback have been shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent stimulation--and thus may curtail the time scale that governs natural sensorimotor integration loops--have been shown to induce short lasting plasticity. Here we summarize recent findings from studies using both categories of BMIs, and discuss the fundamental principles that may underlie their operation and the longevity of the plasticity they induce. We draw comparison to plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for the purpose of re-organization of target brain regions and directed augmentation of sensorimotor maps, and suggest possible avenues for future work to maximize their efficacy and viability in clinical applications.
Collapse
|
18
|
Parker KL. Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition. Front Psychiatry 2015; 6:190. [PMID: 26834650 PMCID: PMC4716138 DOI: 10.3389/fpsyt.2015.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/30/2015] [Indexed: 11/13/2022] Open
Abstract
Timing is a fundamental and highly conserved mammalian capability, yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning, which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here, we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson's disease, autism, and schizophrenia. Lastly, we hypothesize that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. This hypothesis could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic potential of the cerebellum in diseases of impaired cognition.
Collapse
Affiliation(s)
- Krystal L Parker
- Department of Neurology, Carver College of Medicine, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
19
|
Weiss C, Disterhoft JF. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 2015; 6:142. [PMID: 26500564 PMCID: PMC4595794 DOI: 10.3389/fpsyt.2015.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer's disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
20
|
Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 2014; 8:163. [PMID: 25309350 PMCID: PMC4163988 DOI: 10.3389/fnsys.2014.00163] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia.
Collapse
|
21
|
Wang YJ, Chen H, Hu C, Ke XF, Yang L, Xiong Y, Hu B. Baseline theta activities in medial prefrontal cortex and deep cerebellar nuclei are associated with the extinction of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res 2014; 275:72-83. [PMID: 25200518 DOI: 10.1016/j.bbr.2014.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/23/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
It has been shown that both the medial prefrontal cortex (mPFC) and the cerebellum are involved in the extinction of trace conditioned eyeblink responses (CR). However, the neural mechanisms underlying the extinction are still relatively unclear. Theta oscillation in either the mPFC or the cerebellum has been revealed to correlate with the performance of trace CRs during the asymptotic acquisition. Therefore, we sought to further evaluate the impacts of pre-conditioned stimulus (CS) spontaneous theta (5.0-10.0Hz) oscillations in the mPFC and the deep cerebellar nuclei (DCN) on the extinction of trace CRs. Albino guinea pigs were given acquisition training for ten daily sessions followed by seven daily sessions of extinction. Local field potential (LFP) signals in the mPFC and the DCN were recorded when the animals received the CS-alone extinction training. It was found that higher mPFC relative theta ratios [theta/(delta+beta)] during the baseline period (850-ms prior to the CS onset) were predictive of fewer CR incidences rather than more adaptive CR performance (i.e., higher CR magnitude and later CR peak/onset latencies). Likewise, the pre-CS DCN theta activity was associated with the faster CR extinction. Furthermore, it was revealed that the power of pre-CS theta activities in the mPFC and the DCN were correlated until the extinction training day 2. Collectively, these results suggest that the mPFC and the DCN may interact with each other, and the brain oscillation state in which baseline theta activities in both areas are present contributes to the subsequent extinction of trace CRs.
Collapse
Affiliation(s)
- Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Chen Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-feng Ke
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China.
| |
Collapse
|
22
|
Siegel JJ. Modification of persistent responses in medial prefrontal cortex during learning in trace eyeblink conditioning. J Neurophysiol 2014; 112:2123-37. [PMID: 25080570 DOI: 10.1152/jn.00372.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent spiking in response to a discrete stimulus is considered to reflect the active maintenance of a memory for that stimulus until a behavioral response is made. This response pattern has been reported in learning paradigms that impose a temporal gap between stimulus presentation and behavioral response, including trace eyeblink conditioning. However, it is unknown whether persistent responses are acquired as a function of learning or simply represent an already existing category of response type. This fundamental question was addressed by recording single-unit activity in the medial prefrontal cortex (mPFC) of rabbits during the initial learning phase of trace eyeblink conditioning. Persistent responses to the tone conditioned stimulus were observed in the mPFC during the very first training sessions. Further analysis revealed that most cells with persistent responses showed this pattern during the very first training trial, before animals had experienced paired training. However, persistent cells showed reliable decreases in response magnitude over the first training session, which were not observed on the second day of training or for sessions in which learning criterion was met. This modification of response magnitude was specific to persistent responses and was not observed for cells showing phasic tone-evoked responses. The data suggest that persistent responses to discrete stimuli do not require learning but that the ongoing robustness of such responses over the course of training is modified as a result of experience. Putative mechanisms for this modification are discussed, including changes in cellular or network properties, neuromodulatory tone, and/or the synaptic efficacy of tone-associated inputs.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Center for Learning and Memory and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
23
|
Chen H, Wang YJ, Yang L, Hu C, Ke XF, Fan ZL, Sui JF, Hu B. Predictive nature of prefrontal theta oscillation on the performance of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res 2014; 265:121-31. [PMID: 24572215 DOI: 10.1016/j.bbr.2014.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Stimulus-evoked theta oscillations are observed in the medial prefrontal cortex (mPFC) when executing a variety of learning tasks. Here, we aimed to further determine whether spontaneous theta-band (5.0-10.0 Hz) oscillations in the mPFC predicted the subsequent behavioral performance in trace eyeblink conditioning (TEBC), in which the conditioned stimulus (CS) was separated from the unconditioned stimulus (US) by 500 ms trace interval. By recording local field potentials (LFP) signals in the guinea pigs performing the TEBC task, we found that, a higher mPFC relative theta ratio [theta/(delta+beta)] during the baseline (850-ms period prior to the onset of the CS) was predictive of higher magnitude and more adaptive timing rather than faster acquisition of trace conditioned eyeblink responses (CR). However, the prediction of baseline mPFC theta activity was time-limited to the well-learning stage. Additionally, the relative power of mPFC theta activity did not correlate with the CR performance if the trace interval between the CS and the US was shortened to 100 ms. These results suggest that the brain state in which the baseline mPFC theta activity is present or absent is detrimental for the subsequent performance of trace CRs especially when the asymptotic learning state is achieved.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Chen Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-feng Ke
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Zheng-li Fan
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|