1
|
Zhang J, Dai Z, Yu H, Sun B, Ding J, Wang Y. Effects of Dictyophora polysaccharide on cerebellar Purkinje cell degeneration in a chronic alcohol mouse model. Animal Model Exp Med 2025. [PMID: 40223353 DOI: 10.1002/ame2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Recent research showed that the NLRP3 inflammasome was activated in the central nervous system of mice administered chronic ethanol (EtOH). Dictyophora polysaccharides (DIPs) are essential components of the valuable edible fungus Dictyophora, which has antioxidant properties that can delay the aging process of the body. This study aimed to investigate the roles of NLRP3 in chronic EtOH-induced cerebellar Purkinje cell (PC) degeneration and behavioral changes. METHODS C57BL/6J normal and NLRP3 knockout mice were exposed to EtOH for 14 days. Dictyophora polysaccharide (DIP) and NLRP3 inhibitor were administered to the EtOH mice. The pathology and NLRP3-ASC-caspase-1 signaling pathway proteins were analyzed in EtOH mice cerebellar tissues and behavioral performance was assessed in the mice. RESULTS In the EtOH mouse model, we observed increases in the NLRP3 inflammasome proteins, including NLRP3, ASC, caspase-1, mature IL-1β and pro IL-1β, loss of PCs, and motor coordination disorders. We found that DIPs could suppress the NLRP3-ASC-caspase-1 signaling pathway, and alleviate the motor deficits and cerebellar pathological changes in chronic EtOH mice. Next, we used MCC950, a NLRP3 inhibitor, and an NLRP3 knockout strategy to further verify the effects of NLRP3-ASC-caspase-1 signaling in chronic EtOH mice. MCC950 or NLRP3 knockout alleviated the EtOH-induced latency to decreases in fall time, increases in stride width and decreases in stride length. MCC950 or NLRP3 knockout also attenuated PC number loss and suppressed NLRP3 inflammation induced by EtOH. Taken together, pharmacologically or genetically inhibiting NLRP3 alleviated EtOH-induced cerebellar degeneration and behavioral deficits. CONCLUSION These findings indicated that DIPs might diminish EtOH-induced cerebellar degeneration and behavioral deficits through the NLRP3-ASC-caspase-1 signaling pathway, which provides a potential therapeutic target for the prevention and treatment of alcoholism and EtOH-induced cerebellar pathology.
Collapse
Affiliation(s)
- Jian Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Huanhuan Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Zhang W, Yang X, He B, He A, Li J, Zhang X, Zhang Y. Theobromine synergizes with nicotine to enhance animal motor abilities and cognitive function. Behav Pharmacol 2025:00008877-990000000-00125. [PMID: 40167572 DOI: 10.1097/fbp.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The societal consensus on the need for smoking cessation is well-established, yet the number of tobacco users continues to rise. This trend is largely driven by the potent physiological effects of nicotine, which significantly increase the likelihood of tobacco use initiation. Certain compounds found in everyday foods, such as theobromine and caffeine in cocoa products, also exhibit psychostimulatory properties. However, comprehensive studies on the effects of consuming these compounds in the context of tobacco use are limited. This study investigates the role of theobromine, a primary active component in cocoa, in modulating the positive physiological effects of nicotine and explores the underlying mechanisms. Our findings reveal that while low doses of theobromine do not alter nicotine's addictive properties, they amplify its positive physiological effects. Notably, theobromine's impact on nicotine varies significantly between the hippocampus and cerebellum, highlighting region-specific interactions.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou
| | - Xiao Yang
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou
| | - Baojiang He
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou
| | - Aimin He
- Technology Center, China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| | - Jiehui Li
- Technology Center, China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| | - Xiaojing Zhang
- Technology Center, China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| | - Yanfang Zhang
- Technology Center, China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| |
Collapse
|
3
|
Vergadoro M, Stinziani G, Di Gesù C, Gottardi G, Spiezia L, Zola E, Simioni P. Diagnosing neurological comorbidities in patients with alcohol use disorder: Case report. J Addict Dis 2025:1-5. [PMID: 40091418 DOI: 10.1080/10550887.2025.2466875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BACKGROUND Long-term complications of alcohol use disorder (AUD) include severe neurological diseases like Wernicke-Korsakoff syndrome and alcohol-related dementia. Furthermore, acute alcohol intoxication and acute withdrawal syndrome can mimic neurological symptoms. Clinicians may overlook underlying comorbidities by focusing excessively on AUD in these patients. We report two cases wherein AUD was a significant confounding factor in the diagnosis of underlying neurological conditions. CASE PRESENTATIONS A 46-year-old male with AUD developed delirium tremens due to severe AAI. Despite initiating treatment for acute withdrawal syndrome which resolved delirium tremens, space-time disorientation persisted for a week. A brain MRI showed signal abnormalities in the centra semiovalia. A rachicentesis and repeat brain and spine MRI later revealed oligoclonal bands in cerebrospinal fluid and bone marrow signal abnormalities, indicating multiple sclerosis. A 61-year-old female with AUD presented with disorientation and memory deficits following a car accident. One month after discharge, the patient developed left hemidysesthesia, walking instability, strength deficits and hallucinations. Biohumoral tests confirmed that she was still in recovery. An electroencephalogram and brain CT scan and MRI raised the suspicion of Creutzfeldt-Jakob disease; elevated tau protein levels confirmed the diagnosis. The patient's condition deteriorated rapidly, leading to death. CONCLUSIONS Persistent neurological symptoms in AUD patients even after receiving treatment for acute alcohol intoxication or withdrawal syndrome, may indicate the presence of underlying neurodegenerative conditions such as multiple sclerosis and Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- Margherita Vergadoro
- First Chair of Internal Medicine, Alcohol-related Diseases Unit, Department of Medicine, Padova University Hospital, Italy
- School of Community Medicine and Primary Health Care, Department of Women's and Children's Health, University of Padova School of Medicine, Italy
| | - Giulia Stinziani
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| | - Chiara Di Gesù
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| | - Giovanni Gottardi
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| | - Luca Spiezia
- School of Community Medicine and Primary Health Care, Department of Women's and Children's Health, University of Padova School of Medicine, Italy
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| | - Erika Zola
- First Chair of Internal Medicine, Alcohol-related Diseases Unit, Department of Medicine, Padova University Hospital, Italy
- School of Community Medicine and Primary Health Care, Department of Women's and Children's Health, University of Padova School of Medicine, Italy
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| | - Paolo Simioni
- School of Community Medicine and Primary Health Care, Department of Women's and Children's Health, University of Padova School of Medicine, Italy
- First Chair of Internal Medicine, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Italy
| |
Collapse
|
4
|
Ghasempouri SK, Askari Z, Mohammadi H. Ameliorative effect of diazepam against ethanol-induced mitochondrial disruption in brains of the mice. Toxicol Rep 2023; 11:405-412. [PMID: 37955036 PMCID: PMC10632119 DOI: 10.1016/j.toxrep.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Brain oxidative damage and neurodegeneration by ethanol (ETH) are considered as important factors that triggered by oxidative stress. Recently, the abuse of diazepam (DZM) has increased by alcoholism-addicted patients. The present study evaluated the effects of combination treatment of ETH with DZM on oxidative damage induced in brain mitochondria of the mice. Only ETH (0.3, 0.6, and 2.5 g / kg) and ETH+ DZM (2.5 mg / kg) were administered intraperitoneally (ip) to the mice. Pathological changes and oxidative stress biomarkers including ROS, lipid peroxidation, carbonyl protein, mitochondrial function, and glutathione content were evaluated in brain mitochondria after 42 days. Results indicated that co-treatment of DZM and ETH significantly reduced mitochondrial toxicity, oxidative damage, pathological changes and increased level of glutathione. Subchronic ETH administration induced brain oxidative damage, mitochondrial disruption, and serious damage to the brain cells. Whereas, combination treatment improved oxidative damage, mitochondrial function, and pathological changes in brain cells after intoxication by ETH. These findings suggest antioxidant effect of DZM in combination with ETH and can be considered in reducing oxidative stress and mitochondrial damage attenuation in the brain. Combination therapy may be a better therapeutic candidate for prevention of brain oxidative damage induced by ETH.
Collapse
Affiliation(s)
- Seyed Khosro Ghasempouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Askari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Maggioni E, Rossetti MG, Allen NB, Batalla A, Bellani M, Chye Y, Cousijn J, Goudriaan AE, Hester R, Hutchison K, Li CR, Martin‐Santos R, Momenan R, Sinha R, Schmaal L, Solowij N, Suo C, van Holst RJ, Veltman DJ, Yücel M, Thompson PM, Conrod P, Mackey S, Garavan H, Brambilla P, Lorenzetti V. Brain volumes in alcohol use disorder: Do females and males differ? A whole-brain magnetic resonance imaging mega-analysis. Hum Brain Mapp 2023; 44:4652-4666. [PMID: 37436103 PMCID: PMC10400785 DOI: 10.1002/hbm.26404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/03/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Emerging evidence suggests distinct neurobiological correlates of alcohol use disorder (AUD) between sexes, which however remain largely unexplored. This work from ENIGMA Addiction Working Group aimed to characterize the sex differences in gray matter (GM) and white matter (WM) correlates of AUD using a whole-brain, voxel-based, multi-tissue mega-analytic approach, thereby extending our recent surface-based region of interest findings on a nearly matching sample using a complementary methodological approach. T1-weighted magnetic resonance imaging (MRI) data from 653 people with AUD and 326 controls was analyzed using voxel-based morphometry. The effects of group, sex, group-by-sex, and substance use severity in AUD on brain volumes were assessed using General Linear Models. Individuals with AUD relative to controls had lower GM volume in striatal, thalamic, cerebellar, and widespread cortical clusters. Group-by-sex effects were found in cerebellar GM and WM volumes, which were more affected by AUD in females than males. Smaller group-by-sex effects were also found in frontotemporal WM tracts, which were more affected in AUD females, and in temporo-occipital and midcingulate GM volumes, which were more affected in AUD males. AUD females but not males showed a negative association between monthly drinks and precentral GM volume. Our results suggest that AUD is associated with both shared and distinct widespread effects on GM and WM volumes in females and males. This evidence advances our previous region of interest knowledge, supporting the usefulness of adopting an exploratory perspective and the need to include sex as a relevant moderator variable in AUD.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| | - Maria G. Rossetti
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of PsychiatryUniversity of VeronaVeronaItaly
| | | | - Albert Batalla
- Department of PsychiatryUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtthe Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of PsychiatryUniversity of VeronaVeronaItaly
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental HealthSchool of Psychological SciencesMelbourneAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Janna Cousijn
- Neuroscience of Addiction Lab, Department of Psychology, Education and Child StudiesErasmus UniversityRotterdamthe Netherlands
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Robert Hester
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Kent Hutchison
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Chiang‐Shan R. Li
- Department of Psychiatry and of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Rocio Martin‐Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Office of the Clinical DirectorNational Institute on Alcohol Abuse and AlcoholismBethesdaMarylandUSA
| | - Rajita Sinha
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Lianne Schmaal
- OrygenParkvilleAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongAustralia
| | - Chao Suo
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
- Australian Characterisation Commons at Scale (ACCS) ProjectMonash eResearch CentreMelbourneAustralia
| | - Ruth J. van Holst
- Department of Psychiatry, Amsterdam Institute for Addiction ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Dick J. Veltman
- Department of PsychiatryVU University Medical CenterAmsterdamthe Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental HealthSchool of Psychological SciencesMelbourneAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Patricia Conrod
- Department of PsychiatryUniversite de Montreal, CHU Ste Justine HospitalMontrealCanada
| | - Scott Mackey
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health SciencesFaculty of Health Sciences, Australian Catholic UniversityFitzroyVictoriaAustralia
| |
Collapse
|
6
|
Alcohol Withdrawal and the Associated Mood Disorders-A Review. Int J Mol Sci 2022; 23:ijms232314912. [PMID: 36499240 PMCID: PMC9738481 DOI: 10.3390/ijms232314912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Recreational use of alcohol is a social norm in many communities worldwide. Alcohol use in moderation brings pleasure and may protect the cardiovascular system. However, excessive alcohol consumption or alcohol abuse are detrimental to one's health. Three million deaths due to excessive alcohol consumption were reported by the World Health Organization. Emerging evidence also revealed the danger of moderate consumption, which includes the increased risk to cancer. Alcohol abuse and periods of withdrawal have been linked to depression and anxiety. Here, we present the effects of alcohol consumption (acute and chronic) on important brain structures-the frontal lobe, the temporal lobe, the limbic system, and the cerebellum. Apart from this, we also present the link between alcohol abuse and withdrawal and mood disorders in this review, thus drawing a link to oxidative stress. In addition, we also discuss the positive impacts of some pharmacotherapies used. Due to the ever-rising demands of life, the cycle between alcohol abuse, withdrawal, and mood disorders may be a never-ending cycle of destruction. Hence, through this review, we hope that we can emphasise the importance and urgency of managing this issue with the appropriate approaches.
Collapse
|
7
|
Dulman RS, Auta J, Wandling GM, Patwell R, Zhang H, Pandey SC. Persistence of cerebellar ataxia during chronic ethanol exposure is associated with epigenetic up-regulation of Fmr1 gene expression in rat cerebellum. Alcohol Clin Exp Res 2021; 45:2006-2016. [PMID: 34453331 PMCID: PMC8602769 DOI: 10.1111/acer.14691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Russell S. Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Gabriela M. Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| |
Collapse
|
8
|
Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168678. [PMID: 34444449 PMCID: PMC8391842 DOI: 10.3390/ijerph18168678] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, in particular, cerebellar vermis atrophy, the anterior lobe of the cerebellum being highly vulnerable. Alcohol-dependent patients develop gait ataxia and lower limb postural tremor. Prenatal exposure to ethanol causes fetal alcohol spectrum disorder (FASD), characterized by permanent congenital disabilities in both motor and cognitive domains, including deficits in general intelligence, attention, executive function, language, memory, visual perception, and communication/social skills. Children with FASD show volume deficits in the anterior lobules related to sensorimotor functions (Lobules I, II, IV, V, and VI), and lobules related to cognitive functions (Crus II and Lobule VIIB). Various mechanisms underlie ethanol-induced cell death, with oxidative stress and endoplasmic reticulum (ER) stress being the main pro-apoptotic mechanisms in alcohol abuse and FASD. Oxidative and ER stresses are induced by thiamine deficiency, especially in alcohol abuse, and are exacerbated by neuroinflammation, particularly in fetal ethanol exposure. Furthermore, exposure to ethanol during the prenatal period interferes with neurotransmission, neurotrophic factors and retinoic acid-mediated signaling, and reduces the number of microglia, which diminishes expected cerebellar development. We highlight the spectrum of cerebellar damage induced by ethanol, emphasizing physiological-based clinical profiles and biological mechanisms leading to cell death and disorganized development.
Collapse
|
9
|
Zink A, Conrad J, Telugu NS, Diecke S, Heinz A, Wanker E, Priller J, Prigione A. Assessment of Ethanol-Induced Toxicity on iPSC-Derived Human Neurons Using a Novel High-Throughput Mitochondrial Neuronal Health (MNH) Assay. Front Cell Dev Biol 2020; 8:590540. [PMID: 33224955 PMCID: PMC7674658 DOI: 10.3389/fcell.2020.590540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive ethanol exposure can cause mitochondrial and cellular toxicity. In order to discover potential counteracting interventions, it is essential to develop assays capable of capturing the consequences of ethanol exposure in human neurons, and particularly dopaminergic neurons that are crucial for the development of alcohol use disorders (AUD). Here, we developed a novel high-throughput (HT) assay to quantify mitochondrial and neuronal toxicity in human dopaminergic neuron-containing cultures (DNs) from induced pluripotent stem cells (iPSCs). The assay, dubbed mitochondrial neuronal health (MNH) assay, combines live-cell measurement of mitochondrial membrane potential (MMP) with quantification of neuronal branching complexity post-fixation. Using the MNH assay, we demonstrated that chronic ethanol exposure in human iPSC-derived DNs decreases MMP and neuronal outgrowth in a dose-dependent manner. The toxic effect of ethanol on DNs was already detectable after 1 h of exposure, and occurred similarly in DNs derived from healthy individuals and from patients with AUD. We next used the MNH assay to carry out a proof-of-concept compound screening using FDA-approved drugs. We identified potential candidate compounds modulating acute ethanol toxicity in human DNs. We found that disulfiram and baclofen, which are used for AUD treatment, and lithium caused neurotoxicity also in the absence of ethanol, while the spasmolytic drug flavoxate positively influenced MNH. Altogether, we developed an HT assay to probe human MNH and used it to assess ethanol neurotoxicity and to identify modulating agents. The MNH assay represents an effective new tool for discovering modulators of MNH and toxicity in live human neurons.
Collapse
Affiliation(s)
- Annika Zink
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Josefin Conrad
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Andreas Heinz
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erich Wanker
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,University of Edinburgh and UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Gruol DL, Melkonian C, Ly K, Sisouvanthong J, Tan Y, Roberts AJ. Alcohol and IL-6 Alter Expression of Synaptic Proteins in Cerebellum of Transgenic Mice with Increased Astrocyte Expression of IL-6. Neuroscience 2020; 442:124-137. [PMID: 32634532 DOI: 10.1016/j.neuroscience.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that neuroimmune factors, including the cytokine interleukin-6 (IL-6), play a role in the CNS actions of alcohol. The cerebellum is a sensitive target of alcohol, but few studies have examined a potential role for neuroimmune factors in the actions of alcohol on this brain region. A number of studies have shown that synaptic transmission, and in particular inhibitory synaptic transmission, is an important cerebellar target of alcohol. IL-6 also alters synaptic transmission, although it is unknown if IL-6 targets are also targets of alcohol. This is an important issue because alcohol induces glial production of IL-6, which could then covertly influence the actions of alcohol. The persistent cerebellar effects of both IL-6 and alcohol typically involve chronic exposure and, presumably, altered gene and protein expression. Thus, in the current studies we tested the possibility that proteins involved in inhibitory and excitatory synaptic transmission in the cerebellum are common targets of alcohol and IL-6. We used transgenic mice that express elevated levels of astrocyte produced IL-6 to model persistently elevated expression of IL-6, as would occur in alcohol use disorders, and a chronic intermittent alcohol exposure/withdrawal paradigm (CIE/withdrawal) that is known to produce alcohol dependence. Multiple cerebellar synaptic proteins were assessed by Western blot. Results show that IL-6 and CIE/withdrawal have both unique and common actions that affect synaptic protein expression. These common targets could provide sites for IL-6/alcohol exposure/withdrawal interactions and play an important role in cerebellar symptoms of alcohol use such as ataxia.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristine Ly
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jasmin Sisouvanthong
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yvette Tan
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Mira RG, Tapia-Rojas C, Pérez MJ, Jara C, Vergara EH, Quintanilla RA, Cerpa W. Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug Alcohol Depend 2019; 205:107628. [PMID: 31683244 DOI: 10.1016/j.drugalcdep.2019.107628] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
Many studies have reported that alcohol produces harmful effects on several brain structures, including the hippocampus, in both rodents and humans. The hippocampus is one of the most studied areas of the brain due to its function in learning and memory, and a lot of evidence suggests that hippocampal failure is responsible for the cognitive loss present in individuals with recurrent alcohol consumption. Mitochondria are organelles that generate the energy needed for the brain to maintain neuronal communication, and their functional failure is considered a mediator of the synaptic dysfunction induced by alcohol. In this review, we discuss the mechanisms of how alcohol exposure affects neuronal communication through the impairment of glutamate receptor (NMDAR) activity, neuroinflammatory events and oxidative damage observed after alcohol exposure, all processes under the umbrella of mitochondrial function. Finally, we discuss the direct role of mitochondrial dysfunction mediating cognitive and memory decline produced by alcohol exposure and their consequences associated with neurodegeneration.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - María Jose Pérez
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Claudia Jara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Erick H Vergara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile.
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
12
|
Lindberg D, Ho AMC, Peyton L, Choi DS. Chronic Ethanol Exposure Disrupts Lactate and Glucose Homeostasis and Induces Dysfunction of the Astrocyte-Neuron Lactate Shuttle in the Brain. Alcohol Clin Exp Res 2019; 43:1838-1847. [PMID: 31237693 PMCID: PMC6722005 DOI: 10.1111/acer.14137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impairment of monocarboxylate transporter (MCT)-dependent astrocyte-neuron lactate transfer disrupts long-term memory and erases drug-associated memories in mice. However, few studies have examined how drugs of abuse alter astrocyte-neuron lactate transfer in neurocircuits related to addiction. This is particularly pertinent for ethanol (EtOH), which has been demonstrated to impair central nervious system (CNS) glucose uptake and significantly alter peripheral levels of glucose, lactate, acetate, and ketones. METHODS We subjected C57BL/6J mice to a chronic intermittent EtOH (CIE) exposure paradigm to investigate how chronic EtOH exposure alters the concentration of glucose and lactate within the serum and CNS during withdrawal. Next, we determine how chronic injections of lactate (1 g/kg, twice daily for 2 weeks) influence central and peripheral glucose and lactate concentrations. Finally, we determine how CIE and chronic lactate injection affect astrocyte-neuron lactate transfer by analyzing the expression of MCTs. RESULTS Our results show that CIE induces lasting changes in CNS glucose and lactate concentrations, accompanied by increased expression of MCTs. Interestingly, although chronic lactate injection mimics the effect of EtOH on CNS metabolites, chronic lactate injection is not associated with increased expression of MCTs. CONCLUSION CIE increases CNS concentrations of glucose and lactate and augments the expression of MCTs. Although we found that chronic lactate injection mimics EtOH-induced increases in CNS lactate and glucose, lactate failed to alter the expression of MCTs. This suggests that although lactate may influence the homeostasis of bioenergetic molecules in the CNS, EtOH-associated increases in lactate are not responsible for increased MCT expression.
Collapse
Affiliation(s)
- Daniel Lindberg
- Mayo Clinic MD/PhD Program, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, 55905
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Doo-Sup Choi
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| |
Collapse
|
13
|
Tapia-Rojas C, Torres AK, Quintanilla RA. Adolescence binge alcohol consumption induces hippocampal mitochondrial impairment that persists during the adulthood. Neuroscience 2019; 406:356-368. [DOI: 10.1016/j.neuroscience.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/23/2023]
|
14
|
Bisen S, Kakhniashvili D, Johnson DL, Bukiya AN. Proteomic Analysis of Baboon Cerebral Artery Reveals Potential Pathways of Damage by Prenatal Alcohol Exposure. Mol Cell Proteomics 2019; 18:294-307. [PMID: 30413562 PMCID: PMC6356072 DOI: 10.1074/mcp.ra118.001047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Alcohol is one of the most widely misused substances in the world. Alcohol consumption by pregnant women often results in an array of fetal developmental abnormalities, but the damage to the fetus by alcohol remains poorly understood. The limited knowledge regarding the molecular targets of alcohol in the developing fetus constitutes one of the major obstacles in developing effective pharmacological interventions that could prevent fetal damage after alcohol consumption by pregnant women. The fetal cerebral artery is emerging as an important mediator of fetal cerebral damage by maternal alcohol drinking. In the present work, we conduct proteomics analysis of cerebral (basilar) artery lysates of near-term fetal baboons to search for protein targets of fetal alcohol exposure. Our study demonstrates that 3 episodes of binge alcohol exposure during the second trimester-equivalent of human pregnancy are sufficient to render profound changes in fetal cerebral artery proteome. These changes persisted, as they were detected in near-term fetuses. In particular, the relative abundance of 238 proteins differed significantly between control and alcohol-exposed fetuses. Enrichment analysis pointed at the group of metabolic activity proteins as a major class targeted by alcohol. Western blotting confirmed upregulation of the aldehyde dehydrogenase 6 family member A1 (ALDH6A1) in cerebral artery lysates from alcohol-exposed fetuses. This upregulation translated to greater ALDH activity of cerebral artery lysate of near-term fetuses following prenatal alcohol exposure when compared with controls.
Collapse
Affiliation(s)
- Shivantika Bisen
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103
| | - David Kakhniashvili
- Proteomics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Daniel L Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103;.
| |
Collapse
|
15
|
Belém-Filho IJA, Ribera PC, Nascimento AL, Gomes ARQ, Lima RR, Crespo-Lopez ME, Monteiro MC, Fontes-Júnior EA, Lima MO, Maia CSF. Low doses of methylmercury intoxication solely or associated to ethanol binge drinking induce psychiatric-like disorders in adolescent female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:184-194. [PMID: 29734102 DOI: 10.1016/j.etap.2018.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment.
Collapse
Affiliation(s)
| | - Paula Cardoso Ribera
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Aline Lima Nascimento
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratório de Biologia Funcional e Estrutural, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Ensaios In Vitro, Imunologia e Microbiologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratório de Farmacologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcelo Oliveira Lima
- Laboratório de Toxicologia, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | | |
Collapse
|
16
|
Tapia-Rojas C, Mira RG, Torres AK, Jara C, Pérez MJ, Vergara EH, Cerpa W, Quintanilla RA. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Res 2017; 109:1623-1639. [DOI: 10.1002/bdr2.1172] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Rodrigo G. Mira
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Angie K. Torres
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Claudia Jara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - María José Pérez
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Erick H. Vergara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Rodrigo A. Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| |
Collapse
|
17
|
Tapia-Rojas C, Carvajal FJ, Mira RG, Arce C, Lerma-Cabrera JM, Orellana JA, Cerpa W, Quintanilla RA. Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment. Mol Neurobiol 2017; 55:4473-4491. [PMID: 28674997 DOI: 10.1007/s12035-017-0613-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
In the young population, binge drinking is a pattern of problematic alcohol consumption, characterized by a short period of heavy drinking followed by abstinence which is frequently repeated over time. This drinking pattern is associated with mental problems, use of other drugs, and an increased risk of excessive alcohol intake during adulthood. However, little is known about the effects of binge drinking on brain function in adolescents and its neurobiological impact during the adulthood. In the present study, we evaluated the effects of alcohol on hippocampal memory, synaptic plasticity, and mitochondrial function in adolescent rats after a binge drinking episode in vivo. These effects were analyzed at 1, 3, or 7 weeks post alcohol exposure. Our results showed that binge-like ethanol pre-treated (BEP) rats exhibited early alterations in learning and memory tests accompanied by an impairment of synaptic plasticity that was total and partially compensated, respectively. These changes could be attributed to a rapid increase in oxidative damage and a late inflammatory response induced by post ethanol exposure. Additionally, BEP alters the regulation of mitochondrial dynamics and modifies the expression of mitochondrial permeability transition pore (mPTP) components, such as cyclophilin D (Cyp-D) and the voltage-dependent anion channel (VDAC). These mitochondrial structural changes result in the impairment of mitochondrial bioenergetics, decreasing ATP production progressively until adulthood. These results strongly suggest that teenage alcohol binge drinking impairs the function of the adult hippocampus including memory and synaptic plasticity as a consequence of the mitochondrial damage induced by alcohol and that the recovery of hippocampal function could implicate the activation of alternative pathways that fail to reestablish mitochondrial function.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratory of Neurodegenerative Diseases, CIB, Universidad Autónoma de Chile, El llano Subercaseaux 2801, 5to Piso, San Miguel, 8910000, Santiago, Chile
| | - Francisco J Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Camila Arce
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | | | - Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Santiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
- Laboratory of Neurodegenerative Diseases, CIB, Universidad Autónoma de Chile, El llano Subercaseaux 2801, 5to Piso, San Miguel, 8910000, Santiago, Chile.
| |
Collapse
|
18
|
Multiplex Immunoassay of Plasma Cytokine Levels in Men with Alcoholism and the Relationship to Psychiatric Assessments. Int J Mol Sci 2016; 17:472. [PMID: 27043532 PMCID: PMC4848928 DOI: 10.3390/ijms17040472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/26/2022] Open
Abstract
Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33–58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40–58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p < 0.05). Elevated inflammatory mediators in alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention.
Collapse
|
19
|
Abstract
Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.
Collapse
|
20
|
Cheng DT, Jacobson SW, Jacobson JL, Molteno CD, Stanton ME, Desmond JE. Eyeblink Classical Conditioning in Alcoholism and Fetal Alcohol Spectrum Disorders. Front Psychiatry 2015; 6:155. [PMID: 26578987 PMCID: PMC4629452 DOI: 10.3389/fpsyt.2015.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/16/2015] [Indexed: 12/16/2022] Open
Abstract
Alcoholism is a debilitating disorder that can take a significant toll on health and professional and personal relationships. Excessive alcohol consumption can have a serious impact on both drinkers and developing fetuses, leading to long-term learning impairments. Decades of research in laboratory animals and humans have demonstrated the value of eyeblink classical conditioning (EBC) as a well-characterized model system to study the neural mechanisms underlying associative learning. Behavioral EBC studies in adults with alcohol use disorders and in children with fetal alcohol spectrum disorders report a clear learning deficit in these two patient populations, suggesting alcohol-related damage to the cerebellum and associated structures. Insight into the neural mechanisms underlying these learning impairments has largely stemmed from laboratory animal studies. In this mini-review, we present and discuss exemplary animal findings and data from patient and neuroimaging studies. An improved understanding of the neural mechanisms underlying learning deficits in EBC related to alcoholism and prenatal alcohol exposure has the potential to advance the diagnoses, treatment, and prevention of these and other pediatric and adult disorders.
Collapse
Affiliation(s)
- Dominic T Cheng
- Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Psychiatry and Mental Health, University of Cape Town , Cape Town , South Africa ; Department of Human Biology, University of Cape Town , Cape Town , South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Psychiatry and Mental Health, University of Cape Town , Cape Town , South Africa ; Department of Human Biology, University of Cape Town , Cape Town , South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town , Cape Town , South Africa
| | - Mark E Stanton
- Department of Psychology, University of Delaware , Newark, DE , USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|