1
|
Yamasaki Y, Arai T, Takaishi S, Takamura H, Maruki H. Increased stride time variability is associated with a higher risk of falls in patients with ataxia after stroke. Physiother Theory Pract 2024; 40:2916-2924. [PMID: 39612266 DOI: 10.1080/09593985.2023.2286334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Patients presenting with ataxia are at high risk of falling, however, there are limited studies evaluating fall factors restricted to patients presenting with ataxia due to stroke. PURPOSE This study aimed to examine the characteristics of patients with ataxia after stroke based on their motor function to identify variables associated with fall occurrence. METHODS We divided 33 participants who presented with ataxia after stroke into fall and non-fall groups. Data on motor function, cognitive function, and daily functionality were extracted from their admission records. Walking ability was measured as comfortable walking speed and Stride Time Variability (STV). Independent sample t-tests, Mann - Whitney U tests, and multiple logistic regression analysis were performed. RESULTS There were significant differences between fallers and non-fallers in the STV (p < .001), Mini-Balance Evaluations Systems Test score (p < .014) and Scale for Assessment and Rating of Ataxia score assessment (p < .028). In the multiple logistic regression analysis, only STV was associated with an increased risk of falls (p < .02). The area under the receiver operating characteristic curve was 0.839; the cutoff value of gait cycle variability for falls was 6.345% (sensitivity, 80.0%; specificity, 74.0%). CONCLUSION Increased stride time variability is a useful indicator that sensitively captures fall risk in patients with ataxia after stroke.
Collapse
Affiliation(s)
- Yuichiro Yamasaki
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
| | - Tomoyuki Arai
- Department of Physical Therapy, Faculty of Health & Medical Care, Saitama Medical University Graduate School of Medicine, Saitama, Japan
| | - Shinjiro Takaishi
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
| | - Hiroshi Takamura
- Department of Physical Therapy, Health Science University, Fujikawaguchiko Yamanashi, Japan
| | - Hideyuki Maruki
- Maruki Memorial Medical and Social Welfare Center Rehabilitation Department, Moroyama-Machi, Saitama, Japan
- Saitama Medical University orthopaedic surgery, Moroyama-Town, Saitama, Japan
| |
Collapse
|
2
|
Castiglia SF, Sebastianelli G, Abagnale C, Casillo F, Trabassi D, Di Lorenzo C, Ziccardi L, Parisi V, Di Renzo A, De Icco R, Tassorelli C, Serrao M, Coppola G. Local Dynamic Stability of Trunk During Gait Can Detect Dynamic Imbalance in Subjects with Episodic Migraine. SENSORS (BASEL, SWITZERLAND) 2024; 24:7627. [PMID: 39686163 DOI: 10.3390/s24237627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND/HYPOTHESIS Motion sensitivity symptoms, such as dizziness or unsteadiness, are frequently reported as non-headache symptoms of migraine. Postural imbalance has been observed in subjects with vestibular migraine, chronic migraine, and aura. We aimed to assess the ability of largest Lyapunov's exponent for a short time series (sLLE), which reflects the ability to cope with internal perturbations during gait, to detect differences in local dynamic stability between individuals with migraine without aura (MO) with an episodic pattern between attacks and healthy subjects (HS). METHODS Trunk accelerations of 47 MO and 38 HS were recorded during gait using an inertial measurement unit. The discriminative ability of sLLE was assessed through receiver-operating characteristics curves and cutoff analysis. Partial correlation analysis was conducted between the clinical and gait variables, excluding the effects of gait speed. RESULTS MO showed higher sLLE values, and reduced pelvic rotation, pelvic tilt, and stride length values. sLLEML and pelvic rotation showed good ability to discriminate between MO and HS and were correlated with the perceived pain, migraine disability assessment score, and each other. CONCLUSIONS these findings may provide new insights into the postural balance control mechanism in subjects with MO and introduce the sLLEML as a potential measure of dynamic instability in MO.
Collapse
Affiliation(s)
- Stefano Filippo Castiglia
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| | - Dante Trabassi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| | | | | | | | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, 04100 Latina, Italy
| |
Collapse
|
3
|
Torri F, Vadi G, Meli A, Loprieno S, Schirinzi E, Lopriore P, Ricci G, Siciliano G, Mancuso M. The use of digital tools in rare neurological diseases towards a new care model: a narrative review. Neurol Sci 2024; 45:4657-4668. [PMID: 38856822 PMCID: PMC11422437 DOI: 10.1007/s10072-024-07631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Rare neurological diseases as a whole share peculiar features as motor and/or cognitive impairment, an elevated disability burden, a frequently chronic course and, in present times, scarcity of therapeutic options. The rarity of those conditions hampers both the identification of significant prognostic outcome measures, and the development of novel therapeutic approaches and clinical trials. Collection of objective clinical data through digital devices can support diagnosis, care, and therapeutic research. We provide an overview on recent developments in the field of digital tools applied to rare neurological diseases, both in the care setting and as providers of outcome measures in clinical trials in a representative subgroup of conditions, including ataxias, hereditary spastic paraplegias, motoneuron diseases and myopathies.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Vadi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Adriana Meli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Sara Loprieno
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
van de Venis L, Ormiston J, Bruijn S, Geurts ACH, van de Warrenburg BPC, Weerdesteyn V, Keijsers N, Nonnekes J. Are clinical tests and biomechanical measures of gait stability able to differentiate fallers from non-fallers in hereditary spastic paraplegia? Gait Posture 2024; 114:270-276. [PMID: 39437479 DOI: 10.1016/j.gaitpost.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Balance and gait impairments are common in people with hereditary spastic paraplegia (HSP) and often result in falls. Measures that identify patients at risk of falling are clinically relevant, but relatively unexplored in HSP. Here, we evaluated the potential of different balance and gait constructs to (1) identify differences between healthy controls and people with HSP and (2) discriminate between fallers and non-fallers with HSP. METHODS We included 33 people with pure-HSP and 15 healthy controls. We assessed balance confidence (six-item Activities-specific Balance Confidence scale), clinical balance capacity (Mini-Balance Evaluation Systems Test) and gait capacity (ten-meter Walk Test). Biomechanical measures included spatiotemporal gait variability, mediolateral Margin of Stability (MoS), Foot Placement Deviation (FPD), and Local Divergence Exponents (LDEs) of trunk and pelvis, derived from treadmill-walking at comfortable and fixed gait speeds. People with HSP logged their falls during a fifteen-week period and were categorized as 'faller' (≥1 fall) or 'non-faller'. RESULTS People with HSP had significantly lower balance confidence, balance capacity, and gait capacity compared to age-matched controls. People with HSP also showed reduced gait stability, reflected by increased spatiotemporal gait variability, FPD, and LDEs of trunk and pelvis. Overall, 44 % of people with HSP were categorized as 'faller'. Balance confidence (AUC:0.84) and balance capacity (AUC:0.75) discriminated fallers from non-fallers, whereas none of the biomechanical measures significantly differed. CONCLUSION Balance confidence, clinical balance and gait capacity, and biomechanical measures are affected in HSP, but clinical measures showed potential to differentiate fallers from non-fallers in people with HSP.
Collapse
Affiliation(s)
- Lotte van de Venis
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behavior; Department of Rehabilitation; Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands.
| | - Jean Ormiston
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Sjoerd Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander C H Geurts
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behavior; Department of Rehabilitation; Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Bart P C van de Warrenburg
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behavior; Department of Neurology; Nijmegen, the Netherlands
| | - Vivian Weerdesteyn
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behavior; Department of Rehabilitation; Nijmegen, the Netherlands; Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Noël Keijsers
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Jorik Nonnekes
- Radboud University Medical Center; Donders Institute for Brain, Cognition and Behavior; Department of Rehabilitation; Nijmegen, the Netherlands; Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Martinis L, Castiglia SF, Vaghi G, Morotti A, Grillo V, Corrado M, Bighiani F, Cammarota F, Antoniazzi A, Correale L, Liberali G, Piella EM, Trabassi D, Serrao M, Tassorelli C, De Icco R. Differences in Trunk Acceleration-Derived Gait Indexes in Stroke Subjects with and without Stroke-Induced Immunosuppression. SENSORS (BASEL, SWITZERLAND) 2024; 24:6012. [PMID: 39338758 PMCID: PMC11435490 DOI: 10.3390/s24186012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Background: Stroke-induced immunosuppression (SII) represents a negative rehabilitative prognostic factor associated with poor motor performance at discharge from a neurorehabilitation unit (NRB). This study aims to evaluate the association between SII and gait impairment at NRB admission. Methods: Forty-six stroke patients (65.4 ± 15.8 years, 28 males) and 42 healthy subjects (HS), matched for age, sex, and gait speed, underwent gait analysis using an inertial measurement unit at the lumbar level. Stroke patients were divided into two groups: (i) the SII group was defined using a neutrophil-to-lymphocyte ratio ≥ 5, and (ii) the immunocompetent (IC) group. Harmonic ratio (HR) and short-term largest Lyapunov's exponent (sLLE) were calculated as measures of gait symmetry and stability, respectively. Results: Out of 46 patients, 14 (30.4%) had SII. HR was higher in HS when compared to SII and IC groups (p < 0.01). HR values were lower in SII when compared to IC subjects (p < 0.01). sLLE was lower in HS when compared to SII and IC groups in the vertical and medio-lateral planes (p ≤ 0.01 for all comparisons). sLLE in the medio-lateral plane was higher in SII when compared to IC subjects (p = 0.04). Conclusions: SII individuals are characterized by a pronounced asymmetric gait and a more impaired dynamic gait stability. Our findings underline the importance of devising tailored rehabilitation programs in patients with SII. Further studies are needed to assess the long-term outcomes and the role of other clinical features on gait pattern.
Collapse
Affiliation(s)
- Luca Martinis
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 04100 Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Andrea Morotti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Continuity of Care and Frailty, ASST Spedali Civili, 25121 Brescia, Italy
| | - Valentina Grillo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francescantonio Cammarota
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Alessandro Antoniazzi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Luca Correale
- Sports Science Unit, Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Liberali
- Sports Science Unit, Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elisa Maria Piella
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 04100 Latina, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 04100 Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
6
|
Castiglia SF, Trabassi D, Conte C, Gioiosa V, Sebastianelli G, Abagnale C, Ranavolo A, Di Lorenzo C, Coppola G, Casali C, Serrao M. Local Dynamic Stability of Trunk During Gait is Responsive to Rehabilitation in Subjects with Primary Degenerative Cerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1478-1489. [PMID: 38279000 PMCID: PMC11269439 DOI: 10.1007/s12311-024-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
This study aimed to assess the responsiveness to the rehabilitation of three trunk acceleration-derived gait indexes, namely the harmonic ratio (HR), the short-term longest Lyapunov's exponent (sLLE), and the step-to-step coefficient of variation (CV), in a sample of subjects with primary degenerative cerebellar ataxia (swCA), and investigate the correlations between their improvements (∆), clinical characteristics, and spatio-temporal and kinematic gait features. The trunk acceleration patterns in the antero-posterior (AP), medio-lateral (ML), and vertical (V) directions during gait of 21 swCA were recorded using a magneto-inertial measurement unit placed at the lower back before (T0) and after (T1) a period of inpatient rehabilitation. For comparison, a sample of 21 age- and gait speed-matched healthy subjects (HSmatched) was also included. At T1, sLLE in the AP (sLLEAP) and ML (sLLEML) directions significantly improved with moderate to large effect sizes, as well as SARA scores, stride length, and pelvic rotation. sLLEML and pelvic rotation also approached the HSmatched values at T1, suggesting a normalization of the parameter. HRs and CV did not significantly modify after rehabilitation. ∆sLLEML correlated with ∆ of the gait subscore of the SARA scale (SARAGAIT) and ∆stride length and ∆sLLEAP correlated with ∆pelvic rotation and ∆SARAGAIT. The minimal clinically important differences for sLLEML and sLLEAP were ≥ 36.16% and ≥ 28.19%, respectively, as the minimal score reflects a clinical improvement in SARA scores. When using inertial measurement units, sLLEAP and sLLEML can be considered responsive outcome measures for assessing the effectiveness of rehabilitation on trunk stability during walking in swCA.
Collapse
Affiliation(s)
- Stefano Filippo Castiglia
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy.
| | - Dante Trabassi
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Carmela Conte
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Valeria Gioiosa
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Alberto Ranavolo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida, 1, Monte Porzio Catone, 00078, Rome, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso Della Repubblica 79, 04100, Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, Piazza del Campidano, 6, 00162, Rome, Italy
| |
Collapse
|
7
|
Cabanas‐Valdés R, Fernández‐Lago H, Peláez‐Hervás S, Serra‐Rusiñol L, López‐de‐Celis C, Masbernat‐Almenara M. Effect of a Home-Base Core Stability Exercises in Hereditary Ataxia. A Randomized Controlled Trial. A Pilot Randomized Controlled Trial. Mov Disord Clin Pract 2024; 11:666-675. [PMID: 38563436 PMCID: PMC11145153 DOI: 10.1002/mdc3.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Core stability exercises (CSE) have been shown to be effective in improving trunk function in several neurological diseases, but the evidence is scarce on Hereditary Ataxias (HA). OBJECTIVE To evaluate the effectiveness of a 5-week home-based CSE program in terms of ataxia severity, trunk function, balance confidence, gait speed, lower limb motor function, quality of life, health status and falls rate in HA individuals at short- and long-term. METHODS This is an assessor-blind randomized controlled clinical trial parallel group 1:1. The individuals were divided in experimental group (EG) performed standard care in addition to CSE, and control group (CG) performed standard care alone. The CSE home-program was conducted 1-h/day, 5-day/week for 5-week. The assessment was performed at baseline, endpoint (5-week), and follow-up (10-week). The primary outcomes were ataxia severity assessed by the Scale for the Assessment and Rating of Ataxia and trunk function assessed by Spanish-version of Trunk Impairment Scale 2.0. The secondary outcomes were balance confidence assessed by Activities-specific Balance Confidence (ABC), gait speed by 4-meter walk test (4-MWT), the lower limb motor function by 30-s sit-to-stand, quality of life by EuroQol 5-dimension 5-level (EQ-5D-5L), health-status by EQ-5D and falls rate. RESULTS Twenty-three HA individuals were recruited (51.8 ± 11.10 years). Statistically significant group-time interaction was shown in ABC (F:5.539; P = 0.007), EQ-5D-5L Total (F:4.836; P = 0.013), EQ 5D (F:7.207; P = 0.006). CONCLUSIONS No statistical differences between groups for ataxia severity and trunk function were observed. However, were differences for balance confidence, gait speed, quality of life, and falls rate in HA individuals.
Collapse
Affiliation(s)
- Rosa Cabanas‐Valdés
- Department of Physiotherapy, Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Helena Fernández‐Lago
- Department of Nursing and PhysiotherapyUniversitat de LleidaLleidaSpain
- Research group of health care. IRB Lleida, Institute for Biomedical Research Dr. Pifarré FoundationLleidaSpain
- Group on Society Studies, Health, Education and Cures, University of LleidaLleidaSpain
| | | | | | - Carlos López‐de‐Celis
- Department of Physiotherapy, Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAP Jordi Gol)BarcelonaSpain
| | - Maria Masbernat‐Almenara
- Department of Nursing and PhysiotherapyUniversitat de LleidaLleidaSpain
- Research group of health care. IRB Lleida, Institute for Biomedical Research Dr. Pifarré FoundationLleidaSpain
- Group on Society Studies, Health, Education and Cures, University of LleidaLleidaSpain
| |
Collapse
|
8
|
Suzuki M, Hirano S, Otte K, Schmitz-Hübsch T, Izumi M, Tamura M, Kuroiwa R, Sugiyama A, Mori M, Röhling HM, Brandt AU, Murata A, Paul F, Kuwabara S. Digital Motor Biomarkers of Cerebellar Ataxia Using an RGB-Depth Camera-Based Motion Analysis System. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1031-1041. [PMID: 37721679 DOI: 10.1007/s12311-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to identify quantitative biomarkers of motor function for cerebellar ataxia by evaluating gait and postural control using an RGB-depth camera-based motion analysis system. In 28 patients with degenerative cerebellar ataxia and 33 age- and sex-matched healthy controls, motor tasks (short-distance walk, closed feet stance, and stepping in place) were selected from a previously reported protocol, and scanned using Kinect V2 and customized software. The Clinical Assessment Scale for the Assessment and Rating of Ataxia (SARA) was also evaluated. Compared with the normal control group, the cerebellar ataxia group had slower gait speed and shorter step lengths, increased step width, and mediolateral trunk sway in the walk test (all P < 0.001). Lateral sway increased in the stance test in the ataxia group (P < 0.001). When stepping in place, the ataxia group showed higher arrhythmicity of stepping and increased stance time (P < 0.001). In the correlation analyses, the ataxia group showed a positive correlation between the total SARA score and arrhythmicity of stepping in place (r = 0.587, P = 0.001). SARA total score (r = 0.561, P = 0.002) and gait subscore (ρ = 0.556, P = 0.002) correlated with mediolateral truncal sway during walking. These results suggest that the RGB-depth camera-based motion analyses on mediolateral truncal sway during walking and arrhythmicity of stepping in place are useful digital motor biomarkers for the assessment of cerebellar ataxia, and could be utilized in future clinical trials.
Collapse
Affiliation(s)
- Masahide Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan.
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan.
| | - Karen Otte
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Michiko Izumi
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Ryota Kuroiwa
- Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Japan
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Hanna M Röhling
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Atsushi Murata
- Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation of Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| |
Collapse
|
9
|
Manto M, Serrao M, Filippo Castiglia S, Timmann D, Tzvi-Minker E, Pan MK, Kuo SH, Ugawa Y. Neurophysiology of cerebellar ataxias and gait disorders. Clin Neurophysiol Pract 2023; 8:143-160. [PMID: 37593693 PMCID: PMC10429746 DOI: 10.1016/j.cnp.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
There are numerous forms of cerebellar disorders from sporadic to genetic diseases. The aim of this chapter is to provide an overview of the advances and emerging techniques during these last 2 decades in the neurophysiological tests useful in cerebellar patients for clinical and research purposes. Clinically, patients exhibit various combinations of a vestibulocerebellar syndrome, a cerebellar cognitive affective syndrome and a cerebellar motor syndrome which will be discussed throughout this chapter. Cerebellar patients show abnormal Bereitschaftpotentials (BPs) and mismatch negativity. Cerebellar EEG is now being applied in cerebellar disorders to unravel impaired electrophysiological patterns associated within disorders of the cerebellar cortex. Eyeblink conditioning is significantly impaired in cerebellar disorders: the ability to acquire conditioned eyeblink responses is reduced in hereditary ataxias, in cerebellar stroke and after tumor surgery of the cerebellum. Furthermore, impaired eyeblink conditioning is an early marker of cerebellar degenerative disease. General rules of motor control suggest that optimal strategies are needed to execute voluntary movements in the complex environment of daily life. A high degree of adaptability is required for learning procedures underlying motor control as sensorimotor adaptation is essential to perform accurate goal-directed movements. Cerebellar patients show impairments during online visuomotor adaptation tasks. Cerebellum-motor cortex inhibition (CBI) is a neurophysiological biomarker showing an inverse association between cerebellothalamocortical tract integrity and ataxia severity. Ataxic gait is characterized by increased step width, reduced ankle joint range of motion, increased gait variability, lack of intra-limb inter-joint and inter-segmental coordination, impaired foot ground placement and loss of trunk control. Taken together, these techniques provide a neurophysiological framework for a better appraisal of cerebellar disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgium
- Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elinor Tzvi-Minker
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hamburg, Germany
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Trunk stability in fatiguing frequency-dependent lifting activities. Gait Posture 2023; 102:72-79. [PMID: 36934473 DOI: 10.1016/j.gaitpost.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Work-related low-back disorders (WLBDs) are one of the most frequent and costly musculoskeletal conditions. It has been showed that WLBDs may occur when intervertebral or torso equilibrium is altered by a biomechanical perturbations or neuromuscular control error. The capacity to react to such disturbances is heavily determined by the spinal stability, provided by active and passive tissues and controlled by the central nervous system. RESEARCH QUESTION This study aims to investigate trunk stability through the Lyapunov's maximum exponent during repetitive liftings in relation to risk level, as well as to evaluate its ability to discriminate these risk levels. METHODS Fifteen healthy volunteers performed fatiguing lifting tasks at three different frequencies corresponding to low, medium, and high risk levels according to the National Institute for Occupational Safety and Health (NIOSH) equation. We investigated changes in spinal stability during fatiguing lifting tasks at different risk levels using the maximum Lyapunov's index (λMax) computed from trunk accelerations recorded by placing three IMUs at pelvis, lower and upper spine levels. A two-way repeated-measures ANOVA was performed to determine if there was any significant effect on λMax among the three risk levels and the time (start, mid, and end of the task). Additionally, we examined the Pearson's correlation of λMax with the trunk muscle co-activation, computed from trunk sEMG. RESULTS Our findings show an increase in trunk stability with increasing risk level and as the lifting task progressed over time. A negative correlation between λMax and trunk co-activation was observed which illustrates that the increase in spinal stability could be partially attributed to increased trunk muscle co-activation. SIGNIFICANCE This study highlights the possibility of generating stability measures from kinematic data as risk assessment features in fatiguing tasks which may prove useful to detect the risk of developing work-related low back pain disorders and allow the implementation of early ergonomic interventions.
Collapse
|
11
|
Castiglia SF, Trabassi D, Tatarelli A, Ranavolo A, Varrecchia T, Fiori L, Di Lenola D, Cioffi E, Raju M, Coppola G, Caliandro P, Casali C, Serrao M. Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. CEREBELLUM (LONDON, ENGLAND) 2023; 22:46-58. [PMID: 35079958 DOI: 10.1007/s12311-021-01361-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 02/01/2023]
Abstract
This study aimed to assess the ability of 25 gait indices to characterize gait instability and recurrent fallers among persons with primary degenerative cerebellar ataxia (pwCA), regardless of gait speed, and investigate their correlation with clinical and kinematic variables. Trunk acceleration patterns were acquired during the gait of 34 pwCA, and 34 age- and speed-matched healthy subjects (HSmatched) using an inertial measurement unit. We calculated harmonic ratios (HR), percent recurrence, percent determinism, step length coefficient of variation, short-time largest Lyapunov exponent (sLLE), normalized jerk score, log-dimensionless jerk (LDLJ-A), root mean square (RMS), and root mean square ratio of accelerations (RMSR) in each spatial direction for each participant. Unpaired t-tests or Mann-Whitney tests were performed to identify significant differences between the pwCA and HSmatched groups. Receiver operating characteristics were plotted to assess the ability to characterize gait alterations in pwCA and fallers. Optimal cutoff points were identified, and post-test probabilities were calculated. The HRs showed to characterize gait instability and pwCA fallers with high probabilities. They were correlated with disease severity and stance, swing, and double support duration, regardless of gait speed. sLLEs, RMSs, RMSRs, and LDLJ-A were slightly able to characterize the gait of pwCA but failed to characterize fallers.
Collapse
Affiliation(s)
- Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Dante Trabassi
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Antonella Tatarelli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, Monte Porzio Catone, 00078, Rome, Italy.,Department of Human Neurosciences, Sapienza University of Rome, viale dell'Università 30, 00185, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, Monte Porzio Catone, 00078, Rome, Italy
| | - Tiwana Varrecchia
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, Monte Porzio Catone, 00078, Rome, Italy
| | - Lorenzo Fiori
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, Monte Porzio Catone, 00078, Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Davide Di Lenola
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.,Department of Human Neurosciences, Sapienza University of Rome, viale dell'Università 30, 00185, Rome, Italy
| | - Manikandan Raju
- Department of Human Neurosciences, Sapienza University of Rome, viale dell'Università 30, 00185, Rome, Italy
| | - Gianluca Coppola
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Pietro Caliandro
- Unità Operativa Complessa Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome-Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.,Movement Analysis Laboratory, Policlinico Italia, Piazza del Campidano, 6, 00162, Rome, Italy
| |
Collapse
|
12
|
Multimodal Mobility Assessment Predicts Fall Frequency and Severity in Cerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2023; 22:85-95. [PMID: 35122222 PMCID: PMC9883327 DOI: 10.1007/s12311-021-01365-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/01/2023]
Abstract
This cohort study aims to evaluate the predictive validity of multimodal clinical assessment and quantitative measures of in- and off-laboratory mobility for fall-risk estimation in patients with cerebellar ataxia (CA).Occurrence, severity, and consequences of falling were prospectively assessed for 6 months in 93 patients with hereditary (N = 36) and sporadic or secondary (N = 57) forms of CA and 63 healthy controls. Participants completed a multimodal clinical and functional fall risk assessment, in-laboratory gait examination, and a 2-week inertial sensor-based daily mobility monitoring. Multivariate logistic regression analyses were performed to evaluate the predictive capacity of all clinical and in- and off-laboratory mobility measures with respect to fall (1) status (non-faller vs. faller), (2) frequency (occasional vs. frequent falls), and (3) severity (benign vs. injurious fall) of patients. 64% of patients experienced one or recurrent falls and 65% of these severe fall-related injuries during prospective assessment. Mobility impairments in patients corresponded to a mild-to-moderate ataxic gait disorder. Patients' fall status and frequency could be reliably predicted (78% and 81% accuracy, respectively), primarily based on their retrospective fall status. Clinical scoring of ataxic symptoms and in- and off-laboratory gait and mobility measures improved classification and provided unique information for the prediction of fall severity (84% accuracy).These results encourage a stepwise approach for fall risk assessment in patients with CA: fall history-taking readily and reliably informs the clinician about patients' general fall risk. Clinical scoring and instrument-based mobility measures provide further in-depth information on the risk of recurrent and injurious falling.
Collapse
|
13
|
Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. CEREBELLUM (LONDON, ENGLAND) 2022; 22:394-430. [PMID: 35414041 DOI: 10.1007/s12311-022-01373-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Collapse
Affiliation(s)
- Pierre Cabaraux
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.
| | | | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Loic Damm
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Sarah Doss
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Christophe Habas
- Université Versailles Saint-Quentin, Versailles, France.,Service de NeuroImagerie, Centre Hospitalier National des 15-20, Paris, France
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig Maximilians-University Munich, Munich, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Petracca
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Programs in Physical Therapy), Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy.,Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Susanna Summa
- MARlab, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians-University Munich, Munich, Germany
| | - Olivia Surgent
- Neuroscience Training Program and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
| | - Shuai Tao
- Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, 116622, China
| | - Hiroo Terasi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Diego Torres-Russotto
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Brittany Travers
- Department of Kinesiology and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, UMons, Mons, Belgium
| |
Collapse
|
14
|
Ganapathy VS, James TT, Philip M, Kamble N, Bhattacharya A, Dhargave P, Pal PK. Anteroposterior Stability: A Determinant of Gait Dysfunction and Falls in Spinocerebellar Ataxia. Ann Indian Acad Neurol 2021; 24:518-523. [PMID: 34728944 PMCID: PMC8513964 DOI: 10.4103/aian.aian_1090_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Establishing an association between gait variability and direction specific balance indices may help in identifying the risk of falls in patients with spinocerebellar ataxia (SCA) which may help in developing an appropriate intervention. This study is intended to identify the association between balance and gait parameters especially gait variability in these patients. Methods: Patients with genetically confirmed SCA (n = 24) as well as controls (n = 24) who met the study criteria were recruited. Gait was assessed using the GAITRite system and balance was assessed using dynamic posturography (Biodex) to record direction-specific dynamic balance indices. Disease severity was assessed using international cooperative ataxia rating scale (ICARS). Results: The mean age of the SCA group (38.83 ± 13.03 years) and the control group (36.38 ± 9.09 years) were comparable. The age of onset of illness was 32 ± 10.62 years and duration of 5.67 ± 3.62 years. The mean ICARS was 45.10 ± 16.75. There was a significant difference in the overall balance index (OBI), anterior–posterior index (API), medial/lateral index (MLI) between SCA patients (4.56 ± 2.09, 3.49 ± 1.88, 2.94 ± 1.32) and the controls (2.72 ± 1.25, 2.08 ± 0.85, 1.85 ± 0.97). However, correlation was observed only between gait stability and balance parameters in API direction. Conclusions: There was an increased anteroposterior oriented balance deficit in patients with SCA, which was significantly correlating with the gait parameters. The balance training intervention may focus on improving anteroposterior direction to prevent falls and improving walking efficiency.
Collapse
Affiliation(s)
- V S Ganapathy
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Tittu T James
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Mariamma Philip
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Nitish Kamble
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Amitabh Bhattacharya
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pradnya Dhargave
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson's Disease. SENSORS 2021; 21:s21103449. [PMID: 34063468 PMCID: PMC8156709 DOI: 10.3390/s21103449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
The aims of this study were to assess the ability of 16 gait indices to identify gait instability and recurrent fallers in persons with Parkinson’s disease (pwPD), regardless of age and gait speed, and to investigate their correlation with clinical and kinematic variables. The trunk acceleration patterns were acquired during the gait of 55 pwPD and 55 age-and-speed matched healthy subjects using an inertial measurement unit. We calculated the harmonic ratios (HR), percent recurrence, and percent determinism (RQAdet), coefficient of variation, normalized jerk score, and the largest Lyapunov exponent for each participant. A value of ≤1.50 for the HR in the antero-posterior direction discriminated between pwPD at Hoehn and Yahr (HY) stage 3 and healthy subjects with a 67% probability, between pwPD at HY 3 and pwPD at lower HY stages with a 73% probability, and it characterized recurrent fallers with a 77% probability. Additionally, HR in the antero-posterior direction was correlated with pelvic obliquity and rotation. RQAdet in the antero-posterior direction discriminated between pwPD and healthy subjects with 67% probability, regardless of the HY stage, and was correlated with stride duration and cadence. Therefore, HR and RQAdet in the antero-posterior direction can both be used as age- and-speed-independent markers of gait instability.
Collapse
|
16
|
Velázquez-Pérez L, Rodriguez-Labrada R, González-Garcés Y, Arrufat-Pie E, Torres-Vega R, Medrano-Montero J, Ramirez-Bautista B, Vazquez-Mojena Y, Auburger G, Horak F, Ziemann U, Gomez CM. Prodromal Spinocerebellar Ataxia Type 2 Subjects Have Quantifiable Gait and Postural Sway Deficits. Mov Disord 2020; 36:471-480. [PMID: 33107647 DOI: 10.1002/mds.28343] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The search for valid preclinical biomarkers of cerebellar dysfunction is a key research goal for the upcoming era of early interventional approaches in spinocerebellar ataxias. This study aims to describe novel preclinical biomarkers of subtle gait and postural sway abnormalities in prodromal spinocerebellar ataxia type 2 (pre-SCA2). METHODS Thirty pre-SCA2 patients and their matched healthy controls underwent quantitative assessments of gait and postural sway using a wearable sensor-based system and semiquantitative evaluation of cerebellar features by SARA (Scale for the Assessment and Rating of Ataxia) score. RESULTS Quantitative analysis of natural gait showed a significantly larger variability of the swing period, toe-off angle and toe-out angle in pre-SCA2, and larger mean coronal and transverse ranges of motion of the trunk at the lumbar location and of the sagittal range of motion of the trunk at the sternum location compared to controls. During tandem gait, pre-SCA2 subjects showed larger lumbar, trunk, and arm ranges of motion than controls. Postural sway analysis showed excessive body oscillation that was increased in tandem stance. Overall, these abnormalities were detected in pre-SCA2 patients without clinical evidence of abnormalities in SARA. The toe-off angle and swing time variability were significantly correlated with the time to ataxia onset, whereas the toe-off angle and transverse range of motion at trunk position during tandem gait were significantly associated with the SARA score. CONCLUSIONS This study demonstrates early alteration of gait and postural sway control in prodromal SCA2 using a wearable sensor-based system. This offers new pathophysiological hints into this early disease stage and provides novel potential biomarkers for future clinical trials. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, La Habana Vieja, Cuba
| | - Roberto Rodriguez-Labrada
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Department of Molecular Biology, Cuban Neuroscience Centre, Playa, Cuba
| | - Yasmani González-Garcés
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | - Eduardo Arrufat-Pie
- Department of Neurorehabilitation, Clinical & Surgical Hospital "Manuel Piti Fajardo,", Plaza de la Revolución, Cuba
| | - Reidenis Torres-Vega
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | - Jacqueline Medrano-Montero
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | | | - Yaimeé Vazquez-Mojena
- Department of Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Department of Molecular Biology, Cuban Neuroscience Centre, Playa, Cuba
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Experimental Neurology, Medical School, Goethe University, Frankfurt am Main, Germany
| | - Fay Horak
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
17
|
Ranavolo A, Serrao M, Varrecchia T, Casali C, Filla A, Roca A, Silvetti A, Marcotulli C, Rondinone BM, Iavicoli S, Draicchio F. The Working Life of People with Degenerative Cerebellar Ataxia. THE CEREBELLUM 2020; 18:910-921. [PMID: 31468336 DOI: 10.1007/s12311-019-01065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to characterize and analyze the most important individual and organizational variables associated with job accommodation in subjects with degenerative cerebellar ataxia by administering a series of international and validated work activity-related scales. Twenty-four workers (W) and 58 non-workers (NW) were recruited: 34 with autosomal dominant ataxia and 48 with autosomal recessive ataxia (27 with Friedreich ataxia and 21 with sporadic adult-onset ataxia of unknown etiology). The severity of ataxia was rated using the Scale for the Assessment and Rating of Ataxia. Our results showed that the ataxic W were predominantly middle-aged (41-50 years), high school graduate, and married men with a permanent work contract, who had been working for more than 7 years. The W with ataxia exhibited a good level of residual working capacity, irrespective of gender, age range, and duration of the disease, and they were observed to have a low or average-to-low job stress-related risk. Supporting patients with ataxia to find an appropriate job is an important priority because about 78% of NW search for a job and W and NW have the same potential work abilities (no relevant differences were found in terms of disease characteristics, gender, and work resilience). In this view, introducing NW to work-life may have a potential rehabilitative aspect. Findings of this study highlight that equal job opportunities for subjects affected by cerebellar ataxia are recommended.
Collapse
Affiliation(s)
- A Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy.
| | - M Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Via Faggiana 34, 40100, Latina, Italy
- Rehabilitation Centre, Policlinico Italia, Rome, Italy
| | - T Varrecchia
- Department of Engineering, Roma TRE University, Via Vito Volterra 62, 00146, Rome, Italy
| | - C Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Via Faggiana 34, 40100, Latina, Italy
| | - A Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II, Naples, Italy
| | - A Roca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II, Naples, Italy
| | - A Silvetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy
| | - C Marcotulli
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Via Faggiana 34, 40100, Latina, Italy
| | - B M Rondinone
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy
| | - S Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy
| | - F Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078, Rome, Italy
| |
Collapse
|
18
|
Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, Serrao M. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. SENSORS 2019; 19:s19245571. [PMID: 31861099 PMCID: PMC6960492 DOI: 10.3390/s19245571] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022]
Abstract
Background. Patients suffering from cerebellar ataxia have extremely variable gait kinematic features. We investigated whether and how wearable inertial sensors can describe the gait kinematic features among ataxic patients. Methods. We enrolled 17 patients and 16 matched control subjects. We acquired data by means of an inertial sensor attached to an ergonomic belt around pelvis, which was connected to a portable computer via Bluetooth. Recordings of all the patients were obtained during overground walking. From the accelerometric data, we obtained the harmonic ratio (HR), i.e., a measure of the acceleration patterns, smoothness and rhythm, and the step length coefficient of variation (CV), which evaluates the variability of the gait cycle. Results. Compared to controls, patients had a lower HR, meaning a less harmonic and rhythmic acceleration pattern of the trunk, and a higher step length CV, indicating a more variable step length. Both HR and step length CV showed a high effect size in distinguishing patients and controls (p < 0.001 and p = 0.011, respectively). A positive correlation was found between the step length CV and both the number of falls (R = 0.672; p = 0.003) and the clinical severity (ICARS: R = 0.494; p = 0.044; SARA: R = 0.680; p = 0.003). Conclusion. These findings demonstrate that the use of inertial sensors is effective in evaluating gait and balance impairment among ataxic patients.
Collapse
Affiliation(s)
- Pietro Caliandro
- Unità Operativa Complessa Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy;
| | - Carmela Conte
- IRCCS Fondazione Don Carlo Gnocchi, Piazzale Morandi, 6, 20121 Milan, Italy;
| | - Chiara Iacovelli
- IRCCS Fondazione Don Carlo Gnocchi, Piazzale Morandi, 6, 20121 Milan, Italy;
- Correspondence: ; Tel.: +39-0633086554
| | - Antonella Tatarelli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy;
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (S.F.C.); (M.S.)
| | - Giuseppe Reale
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy;
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (S.F.C.); (M.S.)
- Policlinico Italia, Movement Analysis Laboratory, Piazza del Campidano, 6, 00162 Rome, Italy
| |
Collapse
|
19
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
20
|
Serrao M, Chini G, Caramanico G, Bartolo M, Castiglia SF, Ranavolo A, Conte C, Venditto T, Coppola G, di Lorenzo C, Cardinali P, Pierelli F. Prediction of Responsiveness of Gait Variables to Rehabilitation Training in Parkinson's Disease. Front Neurol 2019; 10:826. [PMID: 31428039 PMCID: PMC6688512 DOI: 10.3389/fneur.2019.00826] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Gait disorders represent one of the most disabling features of Parkinson's disease, which may benefit from rehabilitation. No consistent evidence exists about which gait biomechanical factors can be modified by rehabilitation and which clinical characteristic can predict rehabilitation-induced improvements. Objectives: The aims of the study were as follows: (i) to recognize the gait parameters modifiable by a short-term rehabilitation program; (ii) to evaluate the gait parameters that can normalize after rehabilitation; and (iii) to identify clinical variables predicting improvements in gait function after rehabilitation. Methods: Thirty-six patients affected by idiopathic Parkinson's disease in Hoehn-Yahr stage 1–3 and 22 healthy controls were included in the study. Both clinical and instrumental (gait analysis) evaluations were performed before and after a 10-weeks rehabilitation treatment. Time-distance parameters, lower limb joint, and trunk kinematics were measured. Results: At baseline evaluation with matched speed, almost all gait parameters were significantly different between patients and healthy controls. After the 10-weeks rehabilitation, most gait parameters improved, and spatial asymmetry and trunk rotation normalized. Multiple linear regression of gender combined with Unified Parkinson's Disease Rating Scale-III predicted both ΔSpeed and ΔStep length of both sides; gender combined with Unified Parkinson's Disease Rating Scale-II predicted ΔCadence; age combined with Hoehn-Yahr score and disease duration predicted Δtrunk rotation range of motion. Conclusions: Impaired gait parameters are susceptible to improvement by rehabilitation, and younger men with Parkinson's disease who are less severely affected and at early disease stage are more susceptible to improvements in gait function after a 10-weeks rehabilitation program.
Collapse
Affiliation(s)
- Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Giorgia Chini
- Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Guido Caramanico
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | | | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | | | | | | | | | | | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.,IRCCS - Neuromed, Pozzilli, Italy
| |
Collapse
|
21
|
Miscusi M, Serrao M, Conte C, Ippolito G, Marinozzi F, Bini F, Troise S, Forcato S, Trungu S, Ramieri A, Pierelli F, Raco A. Spatial and temporal characteristics of the spine muscles activation during walking in patients with lumbar instability due to degenerative lumbar disk disease: Evaluation in pre-surgical setting. Hum Mov Sci 2019; 66:371-382. [PMID: 31153034 DOI: 10.1016/j.humov.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Our purpose was to investigate the spatial and temporal profile of the paraspinal muscle activation during gait in a group of 13 patients with lumbar instability (LI) in a pre-surgical setting compared to the results with those from both 13 healthy controls (HC) and a sample of 7 patients with failed back surgery syndrome (FBSS), which represents a chronic untreatable condition, in which the spine muscles function is expected to be widely impaired. Spatiotemporal gait parameters, trunk kinematics, and muscle activation were measured through a motion analysis system integrated with a surface EMG device. The bilateral paraspinal muscles (longissimus) at L3-L4, L4-L5, and L5-S1 levels and lumbar iliocostalis muscles were evaluated. Statistical analysis revealed significant differences between groups in the step length, step width, and trunk bending and rotation. As regard the EMG analysis, significant differences were found in the cross-correlation, full-width percentage and center of activation values between groups, for all muscles investigated. Patients with LI, showed preserved trunk movements compared to HC but a series of EMG abnormalities of the spinal muscles, in terms of left-right symmetry, top-down synchronization, and spatiotemporal activation and modulation compared to the HC group. In patients with LI some of such EMG abnormalities regarded mainly the segment involved by the instability and were strictly correlated to the pain perception. Conversely, in patients with FBSS the EMG abnormalities regarded all the spinal muscles, irrespective to the segment involved, and were correlated to the disease's severity. Furthermore, patients with FBSS showed reduced lateral bending and rotation of the trunk and a reduced gait performance and balance. Our methodological approach to analyze the functional status of patients with LI due to spine disease with surgical indications, even in more complex conditions such as deformities, could allow to evaluate the biomechanics of the spine in the preoperative conditions and, in the future, to verify whether and which surgical procedure may either preserve or improve the spine muscle function during gait.
Collapse
Affiliation(s)
- Massimo Miscusi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; Department of NESMOS, Sapienza University, Rome, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; Movement Analysis LAB, Policlinico Italia, Rome, Italy.
| | | | - Giorgio Ippolito
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | - Stefania Troise
- Department of Mechanical and Aerospace Engineering, Mechanical & Thermal Measurement Lab, University of Rome Sapienza, Rome, Italy
| | | | | | | | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Antonino Raco
- Department of NESMOS, Sapienza University, Rome, Italy
| |
Collapse
|
22
|
Guseva OV, Zhukova NG, Vykhodtsev AN. [The correction of motor disorders by special physical exercises in patients with the late cerebellar ataxia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:39-43. [PMID: 31317888 DOI: 10.17116/jnevro201911905139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM The selection of special physical exercises for patients with late cerebellar ataxia based on the biomechanics of balance and gait and evaluation of the clinical effect of therapy. MATERIAL AND METHODS Twelve male patients with the diagnosis of late cerebellar ataxia were included in the study. The mean age was 49.33±8.80 years. The daily program of therapeutic exercises included training lessons with the exercise physician. The duration of training lessons was 25-30 minutes every day besides the independent task-repetitions 5-6 times a day during 12 days. To evaluate a clinical effect, the Scale for the assessment and rating of ataxia (SARA) was administered before the lessons and on the 12-th day of therapy. RESULTS AND CONCLUSION The authors developed the program of physical exercises for patients with late cerebellar ataxia based on the feeling of body weight and consecutive movements of the sole that were taken from techniques of classical dance steps. After 12 days of training, the total scores on SARA decreased (12.75±4.47 vs. 9.00±4.81, p<0.01) due to the decrease in the scores of gait (3.41±1.16 vs. 2.25±0.86, p<0.01) and stance (2.67±0.98 vs. 1.42±1.08, p<0.01). Therefore, special physical exercises are a necessary component of the therapy of late cerebellar ataxia.
Collapse
Affiliation(s)
- O V Guseva
- Siberian State Medical University, Tomsk, Russia
| | - N G Zhukova
- Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
23
|
Buckley C, Alcock L, McArdle R, Rehman RZU, Del Din S, Mazzà C, Yarnall AJ, Rochester L. The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control. Brain Sci 2019; 9:E34. [PMID: 30736374 PMCID: PMC6406749 DOI: 10.3390/brainsci9020034] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment. Tools are urgently needed that address a number of unmet needs in neurological practice. Namely, these include timely and accurate diagnosis; disease stratification; risk prediction; tracking disease progression; and decision making for intervention optimisation and maximising therapeutic response (such as medication selection, disease staging, and targeted support). Using some recent examples of research across a range of relevant neurological conditions-including Parkinson's disease, ataxia, and dementia-we will illustrate evidence that supports progress against these unmet clinical needs. We summarise the novel 'big data' approaches that utilise data mining and machine learning techniques to improve disease classification and risk prediction, and conclude with recommendations for future direction.
Collapse
Affiliation(s)
- Christopher Buckley
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Lisa Alcock
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Ríona McArdle
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Rana Zia Ur Rehman
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Silvia Del Din
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Claudia Mazzà
- Department of Mechanical Engineering, Sheffield University, Sheffield S1 3JD, UK.
| | - Alison J Yarnall
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE7 7DN, UK.
| | - Lynn Rochester
- Institute of Neuroscience/ Institute for Ageing, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE7 7DN, UK.
| |
Collapse
|
24
|
Ekizos A, Santuz A, Schroll A, Arampatzis A. The Maximum Lyapunov Exponent During Walking and Running: Reliability Assessment of Different Marker-Sets. Front Physiol 2018; 9:1101. [PMID: 30197597 PMCID: PMC6117405 DOI: 10.3389/fphys.2018.01101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
The maximum Lyapunov exponent (MLE) has often been suggested as the prominent measure for evaluation of dynamic stability of locomotion in pathological and healthy population. Although the popularity of the MLE has increased in the last years, there is scarce information on the reliability of the method, especially during running. The purpose of the current study was, thus, to examine the reliability of the MLE during both walking and running. Sixteen participants walked and ran on a treadmill completing two measurement blocks (i.e., two trials per day for three consecutive days per block) separated by 2 months on average. Six different marker-sets on the trunk were analyzed. Intraday, interday and between blocks reliability was assessed using the intraclass correlation coefficient (ICC) and the root mean square difference (RMSD). The MLE was on average significantly higher (p < 0.001) in running (1.836 ± 0.080) compared to walking (1.386 ± 0.207). All marker-sets showed excellent ICCs (>0.90) during walking and mostly good ICCs (>0.75) during running. The RMSD ranged from 0.023 to 0.047 for walking and from 0.018 to 0.050 for running. The reliability was better when comparing MLE values between blocks (ICCs: 0.965–0.991 and 0.768–0.961; RMSD: 0.023–0.034 and 0.018–0.027 for walking and running respectively), and worse when considering trials of the same day (ICCs: 0.946–0.980 and 0.739–0.844; RMSD: 0.042–0.047 and 0.045–0.050 for walking and running respectively). Further, different marker-sets affect the reliability of the MLE in both walking and running. Our findings provide evidence that the assessment of dynamic stability using the MLE is reliable in both walking and running. More trials spread over more than 1 day should be considered in study designs with increased demands of accuracy independent of the locomotion condition.
Collapse
Affiliation(s)
- Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: a 4-Year Follow-Up Study. THE CEREBELLUM 2018; 16:629-637. [PMID: 27924492 DOI: 10.1007/s12311-016-0837-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, the progression of gait impairment in a group of patients with primary degenerative cerebellar ataxias was observed over a period of 4 years. A total of 30 patients underwent an initial gait analysis study, and thereafter only 12 were evaluated because they completed the 2- and 4-year follow-up evaluations. Time-distance parameters, trunk and joint range of motion (RoM), and variability parameters (e.g., coefficients of variation) were measured at the baseline and at each follow-up evaluation. The scale for the assessment and rating of ataxia (SARA) was used to evaluate disease severity. We found a significant increase in the SARA score at both the 2- and 4-year follow-up evaluations. Almost all the gait variables changed significantly only at the 4-year follow-up. Particularly, we found a significant decrease in the step length and in the hip, knee, and ankle joint RoM values and noted a significant increase in the trunk rotation RoM and stride-to-stride and step length variability. Furthermore, a significant difference in ankle joint RoM was found between spinocerebellar ataxia and sporadic adult-onset ataxia patients, with the value being lower in the former group of patients. Our findings suggest that patients with degenerative cerebellar ataxias exhibit gait decline after 4 years from the baseline. Moreover, patients try to maintain an effective gait by adopting different compensatory mechanisms during the course of the disease in spite of disease progression.
Collapse
|
26
|
Psychometric properties of outcome measures evaluating decline in gait in cerebellar ataxia: A systematic review. Gait Posture 2018; 61:149-162. [PMID: 29351857 DOI: 10.1016/j.gaitpost.2017.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/02/2023]
Abstract
Cerebellar ataxia often results in impairment in ambulation secondary to gait pattern dysfunction and compensatory gait adjustments. Pharmaceutical and therapy-based interventions with potential benefit for gait in ataxia are starting to emerge, however evaluation of such interventions is hampered by the lack of outcome measures that are responsive, valid and reliable for measurement of gait decline in cerebellar ataxia. This systematic review aimed for the first time to evaluate the psychometric properties of gait and walking outcomes applicable to individuals with cerebellar ataxia. Only studies evaluating straight walking were included. A comprehensive search of three databases (MEDLINE, CINAHL and EMBASE) identified 53 studies meeting inclusion criteria. Forty-nine were rated as 'poor' as assessed by the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The primary objective of most studies was to explore changes in gait related to ataxia, rather than to examine psychometric properties of outcomes. This resulted in methodologies not specific for psychometric assessment. Thirty-nine studies examined validity, 11 examined responsiveness and 12 measured reliability. Review of the data identified double and single support and swing percentage of the gait cycle, velocity, step length and the Scale for Assessment and Rating of Ataxia (SARA) gait item as the most valid and responsive measures of gait in cerebellar ataxia. However, further evaluation to establish their reliability and applicability for use in clinical trials is clearly warranted. We recommend that inter-session reliability of gait outcomes should be evaluated to ensure changes are reflective of intervention effectiveness in cerebellar ataxia.
Collapse
|
27
|
Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture 2018; 60:154-163. [PMID: 29220753 DOI: 10.1016/j.gaitpost.2017.11.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cerebellar Ataxias are a group of gait disorders resulting from dysfunction of the cerebellum, commonly characterised by slowly progressing incoordination that manifests as problems with balance and walking leading to considerable disability. There is increasing acceptance of gait analysis techniques to quantify subtle gait characteristics that are unmeasurable by current clinical methods This systematic review aims to identify the gait characteristics able to differentiate between Cerebellar Ataxia and healthy controls. METHODS Following systematic search and critical appraisal of the literature, gait data relating to preferred paced walking in Cerebellar Ataxia was extracted from 21 studies. A random-effect model meta-analysis was performed for 14 spatiotemporal parameters. Quality assessment was completed to detect risk of bias. RESULTS There is strong evidence that compared with healthy controls, Cerebellar Ataxia patients walk with a reduced walking speed and cadence, reduced step length, stride length, and swing phase, increased walking base width, stride time, step time, stance phase and double limb support phase with increased variability of step length, stride length, and stride time. CONCLUSION The consensus description provided here, clarifies the gait pattern associated with ataxic gait disturbance in a large cohort of participants. High quality research and reporting is needed to explore specific genetic diagnoses and identify biomarkers for disease progression in order to develop well-evidenced clinical guidelines and interventions for Cerebellar Ataxia.
Collapse
Affiliation(s)
- Ellen Buckley
- Department of Neuroscience, University of Sheffield, UK.
| | - Claudia Mazzà
- Department of Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for In Silico Medicine, University of Sheffield, UK.
| | - Alisdair McNeill
- Department of Neuroscience, University of Sheffield, UK; INSIGNEO Institute for In Silico Medicine, University of Sheffield, UK; Sheffield Children's Hospital, UK.
| |
Collapse
|
28
|
Abstract
The cerebellum plays an integral role in the control of limb and ocular movements, balance, and walking. Cerebellar disorders may be classified as sporadic or hereditary with clinical presentation varying with the extent and site of cerebellar damage and extracerebellar signs. Deficits in balance and walking reflect the cerebellum's proposed role in coordination, sensory integration, coordinate transformation, motor learning, and adaptation. Cerebellar dysfunction results in increased postural sway, hypermetric postural responses to perturbations and optokinetic stimuli, and postural responses that are poorly coordinated with volitional movement. Gait variability is characteristic and may arise from a combination of balance impairments, interlimb incoordination, and incoordination between postural activity and leg movement. Intrinsic problems with balance lead to a high prevalence of injurious falls. Evidence for pharmacologic management is limited, although aminopyridines reduce attacks in episodic ataxias and may have a role in improving gait ataxia in other conditions. Intensive exercises targeting balance and coordination lead to improvements in balance and walking but require ongoing training to maintain/maximize any effects. Noninvasive brain stimulation of the cerebellum may become a useful adjunct to therapy in the future. Walking aids, orthoses, specialized footwear and seating may be required for more severe cases of cerebellar ataxia.
Collapse
Affiliation(s)
- Jonathan F Marsden
- Department of Rehabilitation, School of Health Professions, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
29
|
Bürk K, Sival DA. Scales for the clinical evaluation of cerebellar disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:329-339. [PMID: 29903450 DOI: 10.1016/b978-0-444-63956-1.00020-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical scales represent an important tool not only for the initial grading/scoring of disease and assessment of progression, but also for the quantification of therapeutic effects in clinical trials. There are several scales available for the clinical evaluation of cerebellar symptoms. While some scales have been developed and evaluated for specific cerebellar disorders such as Friedreich ataxia, others reliably capture cerebellar symptoms with no respect to the underlying etiology. Each scale has its strengths and weaknesses. Extensive scales are certainly useful for thorough documentation of specific features of certain phenotypes, but this gain of information is not always essential for the purpose of a study. Therefore, compact and manageable scales like the Scale for the Assessment and Rating of Ataxia (SARA) or Brief Ataxia Rating Scale (BARS) are often preferred compared to more complex scales in observational and therapeutic studies.
Collapse
Affiliation(s)
- Katrin Bürk
- Paracelsus-Elena-Klinik Kassel, and University of Marburg, Germany.
| | - Deborah A Sival
- Beatrix Kinderziekenhuis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Abstract
Beyond the classic clinical description, recent studies have quantitatively evaluated gait and balance dysfunction in cerebellar ataxias by means of modern motion analysis systems. These systems have the aim of clearly and quantitatively describing the differences, with respect to healthy subjects, in kinematic, kinetic, and surface electromyography variables, establishing the basis for a rehabilitation strategy and assessing its efficacy. The main findings which characterize the gait pattern of cerebellar patients are: increased step width, reduced ankle joint range of motion with increased coactivation of the antagonist muscles, and increased stride-to-stride variability. Whereas the former is a compensatory strategy adopted by patients to keep the center of mass within the base of support, the latter indicates the inability of patients to maintain dynamic balance through a regular walking pattern and may reflect the primary deficit directly related to cerebellar dysfunction and the consequent lack of muscle coordination during walking. Moreover, during the course of the disease, with the progressive loss of walking autonomy, step length, and lower-limb joint range of motion are drastically reduced. As to the joint coordination defect, abnormal intralimb joint coordination during walking, in terms of both joint kinematics and interaction torques, has been reported in several studies. Furthermore, patients with cerebellar ataxia show a poor intersegmental coordination, with a chaotic coordinative behavior between trunk and hip, leading to increased upper-body oscillations that affect gait performance and stability, sustaining a vicious circle that transforms the upper body into a generator of perturbations. The use of motion analysis laboratories allows a deeper segmental and global characterization of walking impairment in these patients and can shed light on the nature of both the primary specific gait disorder and compensatory mechanisms. Such deeper understanding might reasonably represent a valid prerequisite for establishing better-targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, Rome, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
31
|
Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J Biomed Health Inform 2017; 20:1521-1537. [PMID: 28113185 DOI: 10.1109/jbhi.2016.2608720] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After decades of evolution, measuring instruments for quantitative gait analysis have become an important clinical tool for assessing pathologies manifested by gait abnormalities. However, such instruments tend to be expensive and require expert operation and maintenance besides their high cost, thus limiting them to only a small number of specialized centers. Consequently, gait analysis in most clinics today still relies on observation-based assessment. Recent advances in wearable sensors, especially inertial body sensors, have opened up a promising future for gait analysis. Not only can these sensors be more easily adopted in clinical diagnosis and treatment procedures than their current counterparts, but they can also monitor gait continuously outside clinics - hence providing seamless patient analysis from clinics to free-living environments. The purpose of this paper is to provide a systematic review of current techniques for quantitative gait analysis and to propose key metrics for evaluating both existing and emerging methods for qualifying the gait features extracted from wearable sensors. It aims to highlight key advances in this rapidly evolving research field and outline potential future directions for both research and clinical applications.
Collapse
|
32
|
Conte C, Serrao M, Cuius L, Ranavolo A, Conforto S, Pierelli F, Padua L. Effect of Restraining the Base of Support on the Other Biomechanical Features in Patients with Cerebellar Ataxia. THE CEREBELLUM 2017; 17:264-275. [PMID: 29143300 DOI: 10.1007/s12311-017-0897-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to analyze the biomechanical consequences of reducing the base of support in patients with ataxia. Specifically, we evaluated the spatio-temporal parameters, upper- and lower-body kinematics, muscle co-activation, and energy recovery and expenditure. The gaits of 13 patients were recorded using a motion analysis system in unperturbed and perturbed walking conditions. In the latter condition, patients had to walk using the same step width and speed of healthy controls. The perturbed walking condition featured reduced gait speed, step length, hip and knee range of motion, and energy recovery and increased double support duration, gait variability, trunk oscillation, and ankle joint muscle co-activation. Narrowing the base of support increased gait instability (e.g., gait variability and trunk oscillations) and induced patients to further use alternative compensatory mechanisms to maintain dynamic balance at the expense of a reduced ability to recover mechanical energy. A widened step width gait is a global strategy employed by patients to increase dynamic stability, reduce the need for further compensatory mechanisms, and thus recover mechanical energy. Our findings suggest that rehabilitative treatment should more specifically focus on step width training.
Collapse
Affiliation(s)
- C Conte
- Fondazione Don Carlo Gnocchi, Piazzale Morandi 6, 20121, Milan, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, Polo Pontino, University of Rome, via Franco Faggiana 1668, 04100, Latina, Italy. .,Movement Analysis LAB, Rehabilitation Centre Policlinico Italia, Piazza del Campidano 6, 00162, Rome, Italy.
| | - L Cuius
- Biolab3, Department of Engineering, Roma TRE University, ViaVito Volterra 62, 00149, Rome, Italy
| | - A Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - S Conforto
- Biolab3, Department of Engineering, Roma TRE University, ViaVito Volterra 62, 00149, Rome, Italy
| | - F Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, Polo Pontino, University of Rome, via Franco Faggiana 1668, 04100, Latina, Italy.,IRCSS, Neuromed, Pozzilli, IS, Italy
| | - L Padua
- Fondazione Don Carlo Gnocchi, Piazzale Morandi 6, 20121, Milan, Italy.,Department of Geriatrics, Neuroscience & Orthopaedics, Catholic University, L.go F. Vito, 1, 00168, Rome, Italy
| |
Collapse
|
33
|
Reynard F, Terrier P. Determinants of gait stability while walking on a treadmill: A machine learning approach. J Biomech 2017; 65:212-215. [PMID: 29100597 DOI: 10.1016/j.jbiomech.2017.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 01/17/2023]
Abstract
Dynamic balance in human locomotion can be assessed through the local dynamic stability (LDS) method. Whereas gait LDS has been used successfully in many settings and applications, little is known about its sensitivity to individual characteristics of healthy adults. Therefore, we reanalyzed a large dataset of accelerometric data measured for 100 healthy adults from 20 to 70 years of age performing 10 min treadmill walking. We sought to assess the extent to which the variations of age, body mass and height, sex, and preferred walking speed (PWS) could influence gait LDS. The random forest (RF) and multiple adaptive regression splines (MARS) algorithms were selected for their good bias-variance tradeoff and their capabilities to handle nonlinear associations. First, through variable importance measure (VIM), we used RF to evaluate which individual characteristics had the highest influence on gait LDS. Second, we used MARS to detect potential interactions among individual characteristics that may influence LDS. The VIM and MARS results indicated that PWS and age correlated with LDS, whereas no associations were found for sex, body height, and body mass. Further, the MARS model detected an age by PWS interaction: on one hand, at high PWS, gait stability is constant across age while, on the other hand, at low PWS, gait instability increases substantially with age. We conclude that it is advisable to consider the participants' age as well as their PWS to avoid potential biases in evaluating dynamic balance through LDS.
Collapse
Affiliation(s)
| | - Philippe Terrier
- Clinique romande de réadaptation SUVACare, Sion, Switzerland; IRR, Institute for Research in Rehabilitation, Sion, Switzerland.
| |
Collapse
|
34
|
Identification of specific gait patterns in patients with cerebellar ataxia, spastic paraplegia, and Parkinson's disease: A non-hierarchical cluster analysis. Hum Mov Sci 2017; 57:267-279. [PMID: 28967438 DOI: 10.1016/j.humov.2017.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patients with degenerative neurological diseases such as cerebellar ataxia, spastic paraplegia, and Parkinson's disease often display progressive gait function decline that inexorably impacts their autonomy and quality of life. Therefore, considering the related social and economic costs, one of the most important areas of intervention in neurorehabilitation should be the treatment of gait abnormalities. This study aims to determine whether an entire dataset of gait parameters recorded in patients with degenerative neurological diseases can be clustered into homogeneous groups distinct from each other and from healthy subjects. Patients affected by three different types of primary degenerative neurological diseases were studied. These diseases were: i) cerebellar ataxia (28 patients), ii) hereditary spastic paraplegia (31 patients), and iii) Parkinson's disease (70 patients). Sixty-five gender-age-matched healthy subjects were enrolled as a control group. An optoelectronic motion analysis system was used to measure time-distance parameters and lower limb joint kinematics during gait in both patients and healthy controls. When clustering single parameters, step width and ankle joint range of motion (RoM) in the sagittal plane differentiated cerebellar ataxia group from the other groups. When clustering sets of two, three, or four parameters, several pairs, triples, and quadruples of clusters differentiated the cerebellar ataxia group from the other groups. Interestingly, the ankle joint RoM parameter was present in 100% of the clusters and the step width in approximately 50% of clusters. In addition, in almost all clusters, patients with cerebellar ataxia showed the lowest ankle joint RoM and the largest step width values compared to healthy controls, patients with hereditary spastic paraplegia, and Parkinson's disease subjects. This study identified several clusters reflecting specific gait patterns in patients with degenerative neurological diseases. In particular, the specific gait pattern formed by the increased step width, reduced ankle joint RoM, and increased gait variability, can differentiate patients with cerebellar ataxia from healthy subjects and patients with spastic paraplegia or Parkinson's disease. These abnormal parameters may be adopted as sensitive tools for evaluating the effect of pharmacological and rehabilitative treatments.
Collapse
|