1
|
Anderson CJ, Figueroa KP, Paul S, Gandelman M, Dansithong W, Katakowski JA, Scoles DR, Pulst SM. Viral vector-mediated SLC9A6 gene replacement reduces cerebellar dysfunction in the shaker rat model of Christianson syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.31.621435. [PMID: 39868272 PMCID: PMC11760745 DOI: 10.1101/2024.10.31.621435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Christianson syndrome (CS) is an x-linked recessive neurodevelopmental and neurodegenerative condition characterized by severe intellectual disability, cerebellar degeneration, ataxia, and epilepsy. Mutations to the SLC9A6 gene encoding NHE6 are responsible for CS, and we recently demonstrated that a mutation to the rat Slc9a6 gene causes a similar phenotype in the spontaneous shaker rat model, which exhibits cerebellar degeneration with motor dysfunction. In previous work, we used the PhP.eB-L7-Slc9a6-GFP adeno-associated viral (AAV) vector to demonstrate that gene replacement in Purkinje cells reduced the shaker motor and molecular phenotype. Methods We carried out a 20-week longitudinal study evaluating the impact of Purkinje cell-specific gene replacement on ataxia and tremor. Taking advantage of the high homology between human SLC9A6 and rat Slc9a6, we tested a more clinically relevant construct, AAV9-CAG-hSLC9A6 AAV vector in the shaker rat. In both experimental cohorts, we performed molecular studies to evaluate expression of NHE6 and key cerebellar markers. We then characterized the relationship between molecular markers and motor function, as well between tremor and ataxia. Results Administration of either of PhP.eB-L7-Slc9a6-GFP or AAV9-CAG-hSLC9A6 AAV vectors led to significant improvement in the molecular and motor phenotypes. The abundance of each disease-relevant cerebellar proteins was significantly correlated to motor ataxia. Further, we found that the relationship between cerebellar ataxia and tremor devolved over time, with disease modifying therapy disrupting their temporal relationship. Conclusions These findings impact future SLC9A6-targeted gene therapy efforts for CS and strongly support gene replacement as a viable therapeutic strategy. Furthermore, tremor and ataxia phenotypes may arise from dissociable cerebellar mechanisms.
Collapse
Affiliation(s)
- Collin J Anderson
- School of Medical Sciences, University of Sydney, Camperdown NSW 2006, Australia
- School of Biomedical Engineering, University of Sydney, Darlington NSW 2008, Australia
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Loomis S, Samoylenko E, Virley D, McCreary AC. Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol 2024; 382:114988. [PMID: 39368533 DOI: 10.1016/j.expneurol.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz). PURPOSE Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET. METHOD We tested the effects of acute (single dose) and subchronic (10 days) treatment of NBX (at 5.2, 10.4 and 20.8 mg kg-1 p.o.) administered prior to harmaline and acute NBX (20.8 mg kg-1) administered post-harmaline in male SD rats. Propranolol (20 mg kg-1 i.p.) was used as a positive control. Observed Scoring (OS) was carried out prior to placement in a tremor-monitoring apparatus for the calculation of Tremor Index (TI) and Motion Power Percentage (MPP). RESULTS Acute and subchronic NBX significantly attenuated harmaline-induced tremor at 10.4 and 20.8 mg kg-1, respectively, for each parameter (OS, TI, and MPP) when administered pre-harmaline as did propranolol (20 mg kg-1). NBX did not attenuate harmaline-induced tremor when administered post-harmaline. CONCLUSIONS These data suggest efficacy of acute and subchronic NBX to reduce tremors, based on OS, TI and MPP readouts if administered prior to harmaline. These data are the first to indicate the preclinical effects of an oral botanical cannabinoid formulation, NBX, in an animal model of ET.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
| | - Elena Samoylenko
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | - David Virley
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | | |
Collapse
|
3
|
van der Heijden ME, Sillitoe RV. Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia. DYSTONIA 2023; 2:11515. [PMID: 38105800 PMCID: PMC10722573 DOI: 10.3389/dyst.2023.11515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dystonia is a movement disorder characterized by involuntary co- or over-contractions of the muscles, which results in abnormal postures and movements. These symptoms arise from the pathophysiology of a brain-wide dystonia network. There is mounting evidence suggesting that the cerebellum is a central node in this network. For example, manipulations that target the cerebellum cause dystonic symptoms in mice, and cerebellar neuromodulation reduces these symptoms. Although numerous findings provide insight into dystonia pathophysiology, they also raise further questions. Namely, how does cerebellar pathophysiology cause the diverse motor abnormalities in dystonia, tremor, and ataxia? Here, we describe recent work in rodents showing that distinct cerebellar circuit abnormalities could define different disorders and we discuss potential mechanisms that determine the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Zhan X, Do LV, Zou L, Zhan RS, Jones M, Nawaz S, Manaye K. Harmaline toxicity on dorsal striatal neurons and its role in tremor. Neurotoxicology 2023; 99:152-161. [PMID: 37838252 DOI: 10.1016/j.neuro.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Harmaline is one of the β-carboline derivative compounds that is widely distributed in the food chain and human tissues. Harmine, a dehydrogenated form of harmaline, appeared to have a higher concentration in the brain, and appeared to be elevated in essential tremor (ET) and Parkinson's disease. Exogenous harmaline exposure in high concentration has myriad consequences, including inducing tremor, and causing neurodegeneration of Purkinje cells in the cerebellum. Harmaline-induced tremor is an established animal model for human ET, but its underlying mechanism is still controversial. One hypothesis posits that the inferior olive-cerebellum pathway is involved, and CaV3.1 T-type Ca2+ channel is a critical target of action. However, accumulating evidence indicates that tremor can be generated without disturbing T-type channels. This implies that additional neural circuits or molecular targets are involved. Using in vitro slice Ca2+-imaging and patch clamping, we demonstrated that harmaline reduced intracellular Ca2+ and suppressed depolarization-induced spiking activity of medium spiny striatal neurons (MSN), and this effect of harmaline can be partially attenuated by sulpiride (5 µM). In addition, the frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on MSNs were also significantly attenuated. Furthermore, the induced tremor in C57BL/6 J mice by harmaline injections (i.p. 12.5-18 mg/kg) was also shown to be attenuated by sulpiride (20 mg/kg). This series of experiments suggests that the dorsal striatum is a site of harmaline toxic action and might contribute to tremor generation. The findings also provide evidence that D2 signaling might be a part of the mechanism underlying essential tremor.
Collapse
Affiliation(s)
- Xiping Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ly V Do
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Li Zou
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Ryan Shu Zhan
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Michael Jones
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Saba Nawaz
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Kebreten Manaye
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
5
|
Duanmu X, Wen J, Tan S, Guo T, Zhou C, Wu H, Wu J, Cao Z, Liu X, Chen J, Wu C, Qin J, Gu L, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Aberrant dentato-rubro-thalamic pathway in action tremor but not rest tremor: A multi-modality magnetic resonance imaging study. CNS Neurosci Ther 2023; 29:4160-4171. [PMID: 37408389 PMCID: PMC10651946 DOI: 10.1111/cns.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.
Collapse
Affiliation(s)
- Xiaojie Duanmu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Anderson CJ, Cadeddu R, Anderson DN, Huxford JA, VanLuik ER, Odeh K, Pittenger C, Pulst SM, Bortolato M. A novel naïve Bayes approach to identifying grooming behaviors in the force-plate actometric platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548198. [PMID: 37503098 PMCID: PMC10369919 DOI: 10.1101/2023.07.08.548198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Self-grooming behavior in rodents serves as a valuable model for investigating stereotyped and perseverative responses. Most current grooming analyses primarily rely on video observation, which lacks standardization, efficiency, and quantitative information about force. To address these limitations, we developed an automated paradigm to analyze grooming using a force-plate actometer. New Method Grooming behavior is quantified by calculating ratios of relevant movement power spectral bands. These ratios are then input into a naïve Bayes classifier, trained with manual video observations. To validate the effectiveness of this method, we applied it to the behavioral analysis of the early-life striatal cholinergic interneuron depletion (CIN-d) mouse, a model of tic pathophysiology recently developed in our laboratory, which exhibits prolonged grooming responses to acute stressors. Behavioral monitoring was simultaneously conducted on the force-place actometer and by video recording. Results The naïve Bayes approach achieved 93.7% accurate classification and an area under the receiver operating characteristic curve of 0.894. We confirmed that male CIN-d mice displayed significantly longer grooming durations compared to controls. However, this elevation was not correlated with increases in grooming force. Notably, haloperidol, a benchmark therapy for tic disorders, reduced both grooming force and duration. Comparison with Existing Methods In contrast to observation-based approaches, our method affords rapid, unbiased, and automated assessment of grooming duration, frequency, and force. Conclusions Our novel approach enables fast and accurate automated detection of grooming behaviors. This method holds promise for high-throughput assessments of grooming stereotypies in animal models of tic disorders and other psychiatric conditions.
Collapse
Affiliation(s)
- Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- School of Medical Sciences, University of Sydney, Camperdown, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, Australia
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- School of Medical Sciences, University of Sydney, Camperdown, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, Australia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Job A Huxford
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Easton R VanLuik
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Karen Odeh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, CT, USA
- Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, CT, USA
| | - Stefan M Pulst
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Baumel Y, Yamin HG, Cohen D. Chemical suppression of harmaline-induced body tremor yields recovery of pairwise neuronal coherence in cerebellar nuclei neurons. Front Syst Neurosci 2023; 17:1135799. [PMID: 37251003 PMCID: PMC10211344 DOI: 10.3389/fnsys.2023.1135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Neuronal oscillations occur in health and disease; however, their characteristics can differ across conditions. During voluntary movement in freely moving rats, cerebellar nuclei (CN) neurons display intermittent but coherent oscillations in the theta frequency band (4-12 Hz). However, in the rat harmaline model of essential tremor, a disorder attributed to cerebellar malfunction, CN neurons display aberrant oscillations concomitantly with the emergence of body tremor. To identify the oscillation features that may underlie the emergence of body tremor, we analyzed neuronal activity recorded chronically from the rat CN under three conditions: in freely behaving animals, in harmaline-treated animals, and during chemical suppression of the harmaline-induced body tremor. Suppression of body tremor did not restore single neuron firing characteristics such as firing rate, the global and local coefficients of variation, the likelihood of a neuron to fire in bursts or their tendency to oscillate at a variety of dominant frequencies. Similarly, the fraction of simultaneously recorded neuronal pairs oscillating at a similar dominant frequency (<1 Hz deviation) and the mean frequency deviation within pairs remained similar to the harmaline condition. Moreover, the likelihood that pairs of CN neurons would co-oscillate was not only significantly lower than that measured in freely moving animals, but was significantly worse than chance. By contrast, the chemical suppression of body tremor fully restored pairwise neuronal coherence; that is, unlike in the harmaline condition, pairs of neurons that oscillated at the same time and frequency displayed high coherence, as in the controls. We suggest that oscillation coherence in CN neurons is essential for the execution of smooth movement and its loss likely underlies the emergence of body tremor.
Collapse
Affiliation(s)
| | | | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
8
|
Figueroa KP, Anderson CJ, Paul S, Dansithong W, Gandelman M, Scoles DR, Pulst SM. Slc9a6 mutation causes Purkinje cell loss and ataxia in the shaker rat. Hum Mol Genet 2023; 32:1647-1659. [PMID: 36621975 PMCID: PMC10162436 DOI: 10.1093/hmg/ddad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
- School of Medical Sciences, University of Sydney, Camperdown NSW 2006, Australia
- School of Biomedical Engineering University of Sydney, Darlington NSW 2008, Australia
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
9
|
Huang YH, Lee MT, Hsueh HY, Knutson DE, Cook J, Mihovilovic MD, Sieghart W, Chiou LC. Cerebellar α6GABA A Receptors as a Therapeutic Target for Essential Tremor: Proof-of-Concept Study with Ethanol and Pyrazoloquinolinones. Neurotherapeutics 2023; 20:399-418. [PMID: 36696034 PMCID: PMC10121996 DOI: 10.1007/s13311-023-01342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Ming Tatt Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Han-Yun Hsueh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - James Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, 1090, Austria
| | - Lih-Chu Chiou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|
11
|
Wagle Shukla A. Reduction of neuronal hyperexcitability with modulation of T-type calcium channel or SK channel in essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:335-355. [PMID: 35750369 DOI: 10.1016/bs.irn.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor is one of the most prevalent movement disorders. Propranolol and primidone are the first-line pharmacological therapies. They provide symptomatic control in less than 50% of patients. Topiramate, alprazolam, clonazepam, gabapentin, and botulinum toxin injections are the next line of treatments. These medications lead to modest improvements and are therefore commonly used as add-on agents. Surgical therapies, including deep brain stimulation (DBS) surgery and focused ultrasound beam targeted to the thalamus, are considered for treating tremor refractory to medications and lead to greater than 75% improvements in tremor symptoms. However, DBS is a costly and an invasive procedure; some patients report tolerance to benefits. Focused ultrasound therapy leading to brain lesions is associated with a possibility for permanent clinical deficits. Therefore, research efforts to develop the next generation of oral medications with greater benefits and lesser adverse effects are warranted. There is considerable evidence that the increased functions of calcium channels (P/Q-type and T-type channels) and reduced functions of calcium-activated potassium channels (SK channels) located in the neuronal membranes lead to tremor oscillations. Consequently, many new pharmacological studies have targeted these channels to leverage better clinical outcomes. The current review will discuss the pathophysiology, the specific importance of these channels, and the early clinical experience of using compounds targeting these channels to treat essential tremor.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
12
|
Quantitative behavioral models for high-resolution measurement and characterization of tremor in rodents. Brain Res Bull 2022; 186:8-15. [PMID: 35487386 DOI: 10.1016/j.brainresbull.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/25/2023]
Abstract
Tremor is an involuntary, rhythmic movement disorder. Despite its prevalence, the underlying pathophysiology remains poorly understood and effective treatment options are limited. Animal models are essential in enhancing our understanding of the mechanisms of tremorogenesis and developing new therapeutic interventions. Although tremor is amenable to measurement by automated systems, visual observation is still the most prevalent method for recording tremor in animal studies. This review gives a brief summary of two behavioral methods that enable quantitative measurement of forelimb tremor (the press-while-licking task) and whole-body tremor (the force-plate actometer) in rodents. These methods utilize force transducer and computing technologies to generate high-resolution force-time waveforms for automated detection and characterization of tremor. The focus will be on the sensitive, precise, and quantitative measurement of tremors induced in rodents by low-dose pharmacological agents, brain lesion, physical training, and genetic mutations. The methods reviewed here provide new tools that can facilitate preclinical assessment of treatment strategies for tremor.
Collapse
|
13
|
Elble RJ, Ondo W. Tremor rating scales and laboratory tools for assessing tremor. J Neurol Sci 2022; 435:120202. [DOI: 10.1016/j.jns.2022.120202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/08/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
|
14
|
Deuschl G, Becktepe JS, Dirkx M, Haubenberger D, Hassan A, Helmich R, Muthuraman M, Panyakaew P, Schwingenschuh P, Zeuner KE, Elble RJ. The clinical and electrophysiological investigation of tremor. Clin Neurophysiol 2022; 136:93-129. [DOI: 10.1016/j.clinph.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
|
15
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
16
|
Bello EM, Blumenfeld M, Dao J, Krieg JDS, Wilmerding LK, Johnson MD. Considerations Using Harmaline for a Primate Model of Tremor. Tremor Other Hyperkinet Mov (N Y) 2021; 11:35. [PMID: 34611499 PMCID: PMC8447964 DOI: 10.5334/tohm.634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background While harmaline has been used as a pharmacological model of essential tremor (ET) in rodents and pigs, less is known about the effects of this pharmacological treatment in awake-behaving non-human primates. In this study, we investigated the time-course, amplitude, frequency, and consistency of harmaline tremor in primates. Methods Three rhesus macaques were administered doses of harmaline ranging from 2-12 mg/kg (i.m.), and tremorous movements were quantified with accelerometers. One subject was also trained to perform a self-paced cued reaching task, with task engagement assessed under harmaline doses ranging from 2-8 mg/kg (i.m.). Results Whole-body tremors manifested within 30 minutes of threshold-dose administration, and peak oscillatory frequency ranged between 10-14 Hz. However, large differences in tremor intensity and intermittency were observed across individual subjects under similar dosing levels. Additionally, engagement with the reaching task was dependent on harmaline dose, with performance mostly unaffected at 2 mg/kg and with little task-engagement at 8 mg/kg. Discussion We provide a detailed assessment of factors that may underlie the heterogeneous responses to harmaline, and lay out important caveats towards the applicability of the behaving harmaline-tremoring non-human primate as a preclinical model for ET. Highlights The harmaline-primate is revisited for its potential as a preclinical model of tremor. Spontaneous tremor was heterogenous in amplitude across subjects despite similar harmaline doses, action tremors were not consistently observed, and performance on a behavioral task degraded with higher dosages.
Collapse
Affiliation(s)
- Edward M. Bello
- Biomedical Engineering Department, University of Minnesota, US
| | | | - Joan Dao
- Biomedical Engineering Department, University of Minnesota, US
| | | | | | - Matthew D. Johnson
- Biomedical Engineering Department, University of Minnesota, US
- Institute for Translational Neuroscience, University of Minnesota, US
| |
Collapse
|
17
|
Tremor and Dysmetria in Multiple Sclerosis: A Neurophysiological Study. Tremor Other Hyperkinet Mov (N Y) 2021; 11:30. [PMID: 34395055 PMCID: PMC8323523 DOI: 10.5334/tohm.598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Objective The mechanisms contributing to the pathogenesis of tremor and/or dysmetria in multiple sclerosis (MS) are poorly understood. Abnormal oscillations within the olivo-cerebello-thalamo-cortical networks are believed to play an important part in tremor aetiology, but could also contribute to intention dysmetria due to disruptions in motor timing. Conversely, delayed central motor conduction times are a common feature of ataxias, but could also contribute to the expression of dysmetria in MS. This study examined the roles of central conduction delays in the manifestation of tremor and/or dysmetria in MS. Methods Twenty-three individuals with MS participated: 8 with no movement disorder, 6 with tremor, 4 with pure dysmetria and 5 with both tremor and dysmetria. Median nerve somatosensory evoked potentials (SEPs), transcranial magnetic stimulation (TMS) over the motor cortex and cervical spine, stretch reflexes were used assess sensory and motor conduction times. Results Central, but not peripheral, sensory conductions time were significantly delayed in participants with dysmetria, regardless of the presence of tremor. Similarly, the TMS evoked muscles responses and the long-latency component of stretch reflexes were significantly delayed in those with dysmetria, but not pure tremor. Conclusion Dysmetria in MS is associated with delays in central conduction of sensory or motor pathways, or both, likely leading to disruption of muscle activation timing and terminal oscillations that contribute to dysmetria. Significance The presence of dysmetria in MS is associated with decreased conduction velocities in central sensory and/or motor pathways likely reflects greater demyelination of these axons compared to those with no movement disorder or pure tremor.
Collapse
|
18
|
van der Heijden ME, Kizek DJ, Perez R, Ruff EK, Ehrlich ME, Sillitoe RV. Abnormal cerebellar function and tremor in a mouse model for non-manifesting partially penetrant dystonia type 6. J Physiol 2021; 599:2037-2054. [PMID: 33369735 PMCID: PMC8559601 DOI: 10.1113/jp280978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dominic J. Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Elena K. Ruff
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Michelle E. Ehrlich
- Department of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
19
|
Zhou M, Melin MD, Xu W, Südhof TC. Dysfunction of parvalbumin neurons in the cerebellar nuclei produces an action tremor. J Clin Invest 2020; 130:5142-5156. [PMID: 32634124 PMCID: PMC7524475 DOI: 10.1172/jci135802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Essential tremor is a common brain disorder affecting millions of people, yet the neuronal mechanisms underlying this prevalent disease remain elusive. Here, we showed that conditional deletion of synaptotagmin-2, the fastest Ca2+ sensor for synaptic neurotransmitter release, from parvalbumin neurons in mice caused an action tremor syndrome resembling the core symptom of essential tremor patients. Combining brain region-specific and cell type-specific genetic manipulation methods, we found that deletion of synaptotagmin-2 from excitatory parvalbumin-positive neurons in cerebellar nuclei was sufficient to generate an action tremor. The synaptotagmin-2 deletion converted synchronous into asynchronous neurotransmitter release in projections from cerebellar nuclei neurons onto gigantocellular reticular nucleus neurons, which might produce an action tremor by causing signal oscillations during movement. The tremor was rescued by completely blocking synaptic transmission with tetanus toxin in cerebellar nuclei, which also reversed the tremor phenotype in the traditional harmaline-induced essential tremor model. Using a promising animal model for action tremor, our results thus characterized a synaptic circuit mechanism that may underlie the prevalent essential tremor disorder.
Collapse
Affiliation(s)
- Mu Zhou
- Department of Molecular and Cellular Physiology and
| | | | - Wei Xu
- Department of Molecular and Cellular Physiology and
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
21
|
Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. eLife 2020; 9:e51928. [PMID: 32180549 PMCID: PMC7077982 DOI: 10.7554/elife.51928] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tremor is currently ranked as the most common movement disorder. The brain regions and neural signals that initiate the debilitating shakiness of different body parts remain unclear. Here, we found that genetically silencing cerebellar Purkinje cell output blocked tremor in mice that were given the tremorgenic drug harmaline. We show in awake behaving mice that the onset of tremor is coincident with rhythmic Purkinje cell firing, which alters the activity of their target cerebellar nuclei cells. We mimic the tremorgenic action of the drug with optogenetics and present evidence that highly patterned Purkinje cell activity drives a powerful tremor in otherwise normal mice. Modulating the altered activity with deep brain stimulation directed to the Purkinje cell output in the cerebellar nuclei reduced tremor in freely moving mice. Together, the data implicate Purkinje cell connectivity as a neural substrate for tremor and a gateway for signals that mediate the disease.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Meike E van der Heijden
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute of Texas Children's HospitalHoustonUnited States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
22
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
23
|
Abstract
Essential tremor (ET) is a neurological movement disorder characterised by bilateral limb kinetic/postural tremor, with or without tremor in other body parts including head, voice and lower limbs. Since no causative genes for ET have been identified, it is likely that the disorder occurs as a result of complex genetic factors interacting with various cellular and environmental factors that can result in abnormal function of circuitry involving the cerebello-thalamo-cortical pathway. Genetic analyses have uncovered at least 14 loci and 11 genes that are related to ET, as well as various risk or protective genetic factors. Limitations in ET genetic analyses include inconsistent disease definition, small sample size, varied ethnic backgrounds and many other factors that may contribute to paucity of relevant genetic data in ET. Genetic analyses, coupled with functional and animal studies, have led to better insights into possible pathogenic mechanisms underlying ET. These genetic studies may guide the future development of genetic testing and counselling, and specific, pathogenesis-targeted, therapeutic strategies.
Collapse
|
24
|
Stay TL, Miterko LN, Arancillo M, Lin T, Sillitoe RV. In vivo cerebellar circuit function is disrupted in an mdx mouse model of Duchenne muscular dystrophy. Dis Model Mech 2019; 13:dmm040840. [PMID: 31704708 PMCID: PMC6906634 DOI: 10.1242/dmm.040840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating and ultimately lethal disease involving progressive muscle degeneration and neurological dysfunction. DMD is caused by mutations in the dystrophin gene, which result in extremely low or total loss of dystrophin protein expression. In the brain, dystrophin is heavily localized to cerebellar Purkinje cells, which control motor and non-motor functions. In vitro experiments in mouse Purkinje cells revealed that loss of dystrophin leads to low firing rates and high spiking variability. However, it is still unclear how the loss of dystrophin affects cerebellar function in the intact brain. Here, we used in vivo electrophysiology to record Purkinje cells and cerebellar nuclear neurons in awake and anesthetized female mdx (also known as Dmd) mice. Purkinje cell simple spike firing rate is significantly lower in mdx mice compared to controls. Although simple spike firing regularity is not affected, complex spike regularity is increased in mdx mutants. Mean firing rate in cerebellar nuclear neurons is not altered in mdx mice, but their local firing pattern is irregular. Based on the relatively well-preserved cytoarchitecture in the mdx cerebellum, our data suggest that faulty signals across the circuit between Purkinje cells and cerebellar nuclei drive the abnormal firing activity. The in vivo requirements of dystrophin during cerebellar circuit communication could help explain the motor and cognitive anomalies seen in individuals with DMD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marife Arancillo
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|